
A sidecar for your servicemesh

Abhishek Tiwari
 

 

Citation: A. Tiwari, ”A sidecar for your servicemesh”, Abhishek Tiwari, 2017.
doi:10.59350/89sdh-7xh23

Published on: June 23, 2017

https://orcid.org/0000-0003-2222-2395
https://doi.org/10.59350/89sdh-7xh23


A sidecar for your service mesh 1

In a recent blog post, we discussed object‑inspired container design patterns in detail and the sidecar
pattern was one of them. In a sidecar pattern, the functionality of the main container is extended or
enhanced by a sidecar container without strong coupling between two. This pattern is particularly
useful when using Kubernetes as container orchestration platform. Kubernetes uses Pods. A Pod is
composed of one or more application containers. A sidecar is a utility container in the Pod and its
purpose is to support the main container. It is important to note that standalone sidecar does not
serve any purpose, it must be paired with one or more main containers. Generally, sidecar container
is reusable and can be paired with numerous type of main containers.

Figure 1: An example Sidecar pattern: here main container is a web server which is paired with a log
saver sidecar container that collects the web server’s logs from local disk and streams them to
centralized log collector.

Servicemesh

A service mesh is a dedicated infrastructure layer for handling service‑to‑service communication and
global cross‑cutting of concerns to make these communications more reliable, secure, observable
and manageable. This dedicated layer of infrastructure combined with service deployments is com‑

Abhishek Tiwari 10.59350/89sdh-7xh23 2017‑06‑23

https://doi.org/10.59350/89sdh-7xh23


A sidecar for your service mesh 2

monly referred to as a service mesh. If you have a few microservices then service mesh could be an
overkill but if you have a network of microservices (100s or 1000s of them) as illustrated below then
service mesh is quite essential.

Figure 2:With the network of microservices ‑ service‑to‑service communication can become
challenging. Image credits Appcentrica.

In the context of the microservices architecture and service‑to‑service communication, the term ser‑
vice mesh is relatively new but a similar concept circuit breaker existed before. The roots of service
mesh models can be traced back to microservice sidecars and proxy frameworks like Netflix’s Prana,
Airbnb’s SmartStack and Lyft’s Envoy.

Fault tolerance libraries

Circuit breakers have been extensively used to prevent a network or service failure from cascading to
other services. Fault tolerance libraries such as Twitter’s Finagle, and Netflix’s Hystrix offered imple‑
mentation of the circuit breaker pattern.

The basic idea behind the circuit breaker is very simple. You wrap a protected function call in a
circuit breaker object, which monitors for failures. Once the failures reach a certain threshold,
the circuit breaker trips, and all further calls to the circuit breaker return with an error, without
the protected call being made at all. Usually, you’ll also want some kind of monitor alert if the

Abhishek Tiwari 10.59350/89sdh-7xh23 2017‑06‑23

https://github.com/Netflix/Prana
https://medium.com/airbnb-engineering/smartstack-service-discovery-in-the-cloud-4b8a080de619
https://github.com/lyft/envoy
https://twitter.github.io/finagle/
https://github.com/Netflix/Hystrix
https://doi.org/10.59350/89sdh-7xh23


A sidecar for your service mesh 3

circuit breaker trips. ‑ Martin Fowler

In many ways, fault tolerance libraries were first service meshes. Strong coupling is one of the big
drawbacks for these fault tolerance libraries. For instance, application code has to either extend or
use primitives from these libraries. Moreover one has to use specific languages (Java/Scala) or frame‑
works or application server (Tomcat/Jetty) to implement them.

Unlike fault tolerance libraries, service mesh decouples application code from the management of
service‑to‑service communication. The application code doesn’t need to know about network topol‑
ogy, service discovery, load balancing and connection management logic.

Servicemesh frameworks

At this stage, Istio and Linkerd are two key production ready servicemesh frameworks. Both Istio and
Linkerd are open‑source projects and designed for cloud‑nativemicroservices. Istio uses Lyft’s Envoy
1 2 as an intelligent proxy deployed as a sidecar. Linkerd is built on top of Netty and Finagle. Both
frameworks support dynamic routing, service discovery, load balancing, TLS termination, HTTP/2 &
gRPC proxying, observability, policy enforcement, andmany other features.

Servicemesh deploymentmodels

Service mesh can be deployed in two different patterns: (1) per‑host proxy deployment and, (2) side‑
car proxy deployment. For Istio, Envoy is generally deployed as sidecar proxy but it can also be de‑
ployed on a per‑host proxy pattern. In the case of Linkerd, linkerd (Finagle + netty) can be deployed
either as proxy instance or sidecar. Istio currently runs only on Kubernetes, whereas Linkerd can run
on Kubernetese, DC/OS, and a cluster of host machines.

In per‑host proxydeploymentpattern, oneproxy is deployedper host. A host canbea virtualmachine,
or a physical host or a Kubernetes worker node. Multiple instances of application services run on the
host. All application services on a given host route traffic through this one proxy instance. In the case
of Kubernetes, the proxy instance can be deployed as daemonset.

1Envoy is written in C++ and it is small, lightweight L7 proxy and communication bus
2In addition to this blog post, I will highly recommend going through a series of posts published by Christian Posta on
Envoy sidecar proxy

Abhishek Tiwari 10.59350/89sdh-7xh23 2017‑06‑23

https://istio.io
https://linkerd.io/
https://lyft.github.io/envoy/
http://blog.christianposta.com/microservices/00-microservices-patterns-with-envoy-proxy-series/
http://blog.christianposta.com/microservices/00-microservices-patterns-with-envoy-proxy-series/
https://doi.org/10.59350/89sdh-7xh23


A sidecar for your service mesh 4

Figure 3: Per‑host proxy deployment pattern for service mesh. Services A, B, and C can
communicate to each other via corresponding per‑host service mesh proxy instances. Each host
runs multiple instances of A, B, and C.

In sidecar proxy deployment pattern, one sidecar proxy is deployed per instance of every service. This
model is particularly useful for deployments that use containers or Kubernetes. In the case of Ku‑
bernetes, a service mesh sidecar container can be deployed along with application service container
as part of the Kubernetes Pod. Obviously, sidecar approach requires more instances of the sidecar,
hence a smaller resource profile for sidecar is usually appropriate. If resource profile is an issue, as
mentioned above, by deploying servicemesh instance as a daemonset, we can reduce the number of
service mesh containers to one per‑host instead of one per pod.

Figure 4: Sidecar pattern for service mesh. Services A, B, and C can communicate to each other via
corresponding sidecar proxy instances.

By default, proxies handle only intra‑servicemesh cluster traffic ‑ between the source (upstream) and

Abhishek Tiwari 10.59350/89sdh-7xh23 2017‑06‑23

https://doi.org/10.59350/89sdh-7xh23


A sidecar for your service mesh 5

the destination (downstream) services. To expose a service which is part of service mesh to outside
word, you have to enable ingress traffic. Similarly, if a service depends on an external service youmay
require enabling the egress traffic.

Figure 5: Request flow ‑ Service mesh, ingress, egress. In this example, the external client requests
to finalize the checkout process. This request reaches to Checkout Service via ingress, which
then invokes Payment Service. Payment Service depends on external service
Paypal APIs to process the actual payment which is routed through the egress.

Service‑to‑service communication

One of the core components of any mesh framework is service‑to‑service communication. To enable
service‑to‑service communication a service mesh framework offers following key features,

Dynamic request routing In a service mesh implementation, dynamic request routing enables re‑
quest to be routed to a specific version of service (v1, v2, v3) in the given environment (dev, stag,
prod) using routing rules. The actual implementation of dynamic request routing and routing rules
may vary 3 4 betweendifferent servicemesh frameworks but basicmechanics remains same ‑ a source

3Dynamic request routing in Linkerd
4Dynamic request routing in Istio

Abhishek Tiwari 10.59350/89sdh-7xh23 2017‑06‑23

https://linkerd.io/features/routing/
https://istio.io/docs/concepts/traffic-management/request-routing.html
https://doi.org/10.59350/89sdh-7xh23


A sidecar for your service mesh 6

service requests to a target service, exact version of target service is determined by service mesh in‑
stance by looking up routing rules. Dynamic request routing also helps with traffic shifting for com‑
mon deployment scenarios such as blue‑green deploys, Canary, A/B testing, etc.

Figure 6: Dynamic request routing using service mesh. In this case service mesh determines target
service version dynamically based on the routing rules. It then controls percentage of requests
routed to two different version of target service enabling to shift traffic in an incremental and
controlled manner.

Control Plane Due to distributed nature of service mesh, a control plane or a similar centralized
management utility is desirable. This utility helps in the management of routing tables, service dis‑
covery, and load balancing pools. In Istio it is called as control plan which consists of three key com‑
ponents Pilot, Mixer, Istio‑Auth. In Linkerd, namerd 5 is a centralized service that manages to routing
tables and service discovery. It achieves this by storing routing rules in dtabs 6 and using namers 7 for

5namerd, dtabs, and namers
6namerd, dtabs, and namers
7namerd, dtabs, and namers

Abhishek Tiwari 10.59350/89sdh-7xh23 2017‑06‑23

https://linkerd.io/in-depth/namerd/
https://linkerd.io/in-depth/dtabs/
https://linkerd.io/in-depth/dtabs/#namers-addresses
https://linkerd.io/in-depth/namerd/
https://linkerd.io/in-depth/dtabs/
https://linkerd.io/in-depth/dtabs/#namers-addresses
https://linkerd.io/in-depth/namerd/
https://linkerd.io/in-depth/dtabs/
https://linkerd.io/in-depth/dtabs/#namers-addresses
https://doi.org/10.59350/89sdh-7xh23


A sidecar for your service mesh 7

service discovery.

Figure 7: Control plane is responsible for managing canonical representation of routing tables,
service discovery, and load balancing pools.

Obviously, any comparison between the Istio control plane with Linkerd’s namerd will be like com‑
paring apple with orange. Nonetheless, Istio control plane is more feature rich and offers a lot more
functionalities than namerd. For instance, with help of Mixer and Istio‑Auth control plane enables
service‑to‑service and end‑user authentication, enforcing access control and usage policies across
the service mesh.

Service discovery and load balancing Service discovery helps to discover the pool of instances of
a specific version of service in a particular environment and update the load balancing pools accord‑
ingly. Both Istio (by virtue of Envoy’s features) and Linkerd (by inherited Finagle’s features) support
several sophisticated load balancing algorithms 8. In addition, linkerd provides failure‑ and latency‑
aware load balancing that can route around slow or broken service instances. With Envoy, failure‑
aware load balancing is implemented differently i.e. when health check failures for a given instance
exceeds a pre‑specified threshold, it will be ejected from the load balancing pool.

8Envoy Load balancing algorightms and Load balancing in Linkerd

Abhishek Tiwari 10.59350/89sdh-7xh23 2017‑06‑23

https://lyft.github.io/envoy/docs/intro/arch_overview/load_balancing.html
https://blog.buoyant.io/2016/03/16/beyond-round-robin-load-balancing-for-latency/index.html
https://doi.org/10.59350/89sdh-7xh23


A sidecar for your service mesh 8

Istio vs. Linkerd

Features Istio Linkerd

Proxy Envoy Proxy Finagle + Jetty

Circuit
Breaker

Enforces circuit breaking limits at the
network level; circuit breaker can be set
based on a number of criteria such as
connection and request limits.

The two types of circuit breaking: (1) Fail
Fast ‑ a session‑driven circuit breaker,
and (2) Failure Accrual ‑ a request‑driven
circuit breaker

Dynamic
Request
Routing

Fine‑grained dynamic request routing to
service instances by versions or
environment;

Service destination (service name) and
the concrete destination (version and
environment) to allow dynamic request
routing

Traffic
Shift‑
ing/Split‑
ting

Yes;shift traffic in an incremental and
controlled way.

Yes;shift traffic in an incremental and
controlled way.

Service
Discov‑
ery

Provides a platform‑agnostic service
discovery interface; Consumes information
from the service registry

Uses namer for service discovery which
ships with a simple file‑based service
discovery mechanism but can also work
with Zookeeper, Consul, Kubernetes

Load Bal‑
ancing

Support several sophisticated load
balancing algorithms provided by Envoy;
Eject unhealthy service instance from the
load balancing pool

Support several Finagle’s load balancing
algorithms; provide failure‑ and
latency‑aware load balancing

Security Securing end‑user to service
communication and service‑to‑service
communication; Key management using
per‑cluster CA; Planned End‑user to service
authentication

Easy to add TLS to all service‑to‑service
calls; Per‑service or per‑environment
certificates; Key management involved
process

Access
Control

Enforce simple whitelist‑ or blacklist‑based
access control; Enforce quotas and rate
limits

‑

Abhishek Tiwari 10.59350/89sdh-7xh23 2017‑06‑23

https://doi.org/10.59350/89sdh-7xh23


A sidecar for your service mesh 9

Features Istio Linkerd

ObservabilityMetrics (Prometheus, statsd); Monitoring
(New Relic, Stackdriver); Logging
(Application and Access logs); Distributed
tracing (Zipkin)

Distributed tracing (Zipkin); Metrics
(InfluxDB, Prometheus, statsd)

Deployment
Support

Kubernetes; Sidecar proxy Kubernetes, Mesos, Cluster of hosts;
Per‑host or sidecar proxy

Control
Plane

Pilot, Mixer, Istio‑Auth namerd

Service‑
to‑
service
Commu‑
nication

HTTP1.1 or HTTP/2, gRPC or TCP, with or
without TLS

HTTP1.1 or HTTP/2, gRPC or TCP, with or
without TLS

API Gateway vs. Servicemesh

There is definitely some overlap between API Gateway and Servicemesh patterns i.e. request routing,
composition, authentication, rate limiting, error handling, monitoring, etc. As a case in point, one of
the open source API Gateway ‑ Ambassador uses Envoy for the heavy lifting. Given the use of Envoy,
there’s a good amount of overlap between Ambassador and Istio. That said, the primary focus of a
service mesh is service‑to‑service communication (internal traffic), whereas an API Gateway offers a
single entry point for external clients such as a mobile app or a web app used by end‑user to access
services (external traffic).

Technically one can use API Gateway to facilitate internal service‑to‑service communication but not
without introducing the latency and performance issues. As the composition of services can change
over time and should be hidden from external clients ‑ API Gateway makes sure that this complexity
is hidden from the external client. It is important to note that a service mesh can use a diverse set
of protocols (RPC/gRPC/REST), some of which might not be friendly to external clients. Again, API
Gateway can handle multiple types of protocols and if can support protocol translation if required.
There is no reason why one can not use API Gateway in front of a service mesh 9 ‑ that’s exactly what
we should be doing as a best practice.

9Enabling Ingress Traffic ‑ how to configure Istio to expose a service outside of the service mesh cluster

Abhishek Tiwari 10.59350/89sdh-7xh23 2017‑06‑23

http://www.getambassador.io/
https://istio.io/docs/tasks/ingress.html
https://doi.org/10.59350/89sdh-7xh23


A sidecar for your service mesh 10

Figure 8: API Gateway in front of a service mesh

Abhishek Tiwari 10.59350/89sdh-7xh23 2017‑06‑23

https://doi.org/10.59350/89sdh-7xh23

	Service mesh
	Fault tolerance libraries
	Service mesh frameworks
	Service mesh deployment models
	Service-to-service communication

	Istio vs. Linkerd
	API Gateway vs. Service mesh

