
Building Distributed Systemswith
Mesos

Abhishek Tiwari
 

 

Citation: A. Tiwari, ”Building Distributed Systems with Mesos”, Abhishek
Tiwari, 2014. doi:10.59350/7awbn-2mm29

Published on: February 27, 2014

https://orcid.org/0000-0003-2222-2395
https://doi.org/10.59350/7awbn-2mm29


Building Distributed Systems with Mesos 1

Apache Mesos is a popular open source cluster manager which enables building resource‑efficient
distributed systems. Mesos provides efficient dynamic resources isolation and sharing across multi‑
ple distributed applications such as Hadoop, Spark, Memcache, MySQL etc on a dynamic shared pool
of resources nodes. This means with Mesos you can run any distributed application which requires
clustered resources.

Single compute unit

Mesos allows multiple services to scale and utilise a shared pool of servers more efficiently. The key
idea behind the Mesos is to turn your data centre into one very large computer. Think in this way, if
you have 5 nodes with 8 CPU Cores and 32GB RAM and 10 nodes with 4 CPU Cores and 16GB RAM ‑
usingMesos you can run themas one single large compute unit of 320GBRAMand 80 CPUCores. With
Mesos rather than running multiple applications on separate clusters , you are efficient distributing
resources across multiple application on a single large compute unit.

Who is using Mesos?

Apache Mesos has been used in production by Twitter, AirBnB and many other companies for web‑
scale computing. Twitter is running several key services including analytics and ads. Similarly AirBnB
uses Mesos to manage their big data infrastructure.

Similar type of systems Borg and its successor Omega are used by Google. Both Omega andMesos let
you runmultiple distributed systems atop the same cluster of servers.

Mesos Internals

Mesos is leveraging features in modern kernels for resource isolation, prioritisation, limiting and ac‑
counting. This is normally done by cgroups in Linux, zones in Solaris. Mesos provide resources iso‑
lation for CPU, memory, I/O, file system , etc. It is also possible to use Linux containers but current
isolation support for Linux container in Mesos is limited to only CPU andmemory.

Mesos Architecture

Mesos architecture1 consists of a Mesos Master that manages Mesos Slaves and frameworks that run
tasks on Mesos Slaves. Master is in soft state2 with one or more stand‑by managed by ZooKeeper to
1Mesos: A Platform for Fine‑Grained Resource Sharing in the Data Center
2the master can reconstruct completely its internal state from the periodic messages it gets from the slaves, and from the
framework schedulers

Abhishek Tiwari 10.59350/7awbn-2mm29 2014‑02‑27

http://mesos.apache.org/
http://mesos.berkeley.edu/mesos_tech_report.pdf
https://doi.org/10.59350/7awbn-2mm29


Building Distributed Systems with Mesos 2

implement the failover mechanism.

A framework is an application running on top of Mesos. AMesos framework normally usesMesos APIs
(C++, Python, Ruby, JVM, Go) exposed by Mesos kernel. Using these APIs a framework interacts with
Mesos Master to accept and register the resources allocation on Mesos Slaves.

A framework consists of two key components,

• a scheduler accepts and registers resources frommaster, and
• an executor is a process launched on slave nodes to run the framework’s tasks.

Some frameworks distributed in nature such asHadoop, Spark, etc. Distributed frameworks normally
employ distributed executors.

Figure 1:Mesos Architecture and key components

HowMesos Works?

1. When a Mesos Slave has free resource, it reports to Mesos Master about availability.

Abhishek Tiwari 10.59350/7awbn-2mm29 2014‑02‑27

https://doi.org/10.59350/7awbn-2mm29


Building Distributed Systems with Mesos 3

2. Using allocation policy, Mesos Master determines how many resources are offered to each
framework.

3. Then Master send offers and frameworks’ schedulers select which of the offered resources to
accept.

4. When a frameworks accepts offered resources, it passes to Mesos a description of the tasks it
wants to run on them.

5. In turn, MesosMaster sends the tasks to the Slave, which allocates appropriate resources to the
framework’s executor.

6. Finally, framework’s executor launches the tasks.

Mesos Frameworks

Number of Mesos frameworks is growing very rapidly. Here is a list of popular frameworks,

Continuous Integration: Jenkins, GitLab

Big Data: Hadoop, Spark, Storm, Kafka, Cassandra, Hypertable, MPI

Pythonworkloads: DPark, Exelixi

Meta‑Frameworks / HA Services: Aurora, Marathon

Distributed Cron: Chronos

Containers: Docker

There are two notable frameworks currently available to support batch processing and long‑running
services: Chronos (Unix cron equivalent) and Marathon (Unix init.d equivalent). Marathon is a meta
framework and it is used bymost of other frameworks and application including Chronos.

Abhishek Tiwari 10.59350/7awbn-2mm29 2014‑02‑27

https://github.com/airbnb/chronos
https://github.com/mesosphere/marathon
https://doi.org/10.59350/7awbn-2mm29


Building Distributed Systems with Mesos 4

Figure 2:Mesos architecture supports both batch jobs and long‑running services/apps. Image
Credits Typesafe Blog.

Marathon can run web applications like Rails3, Django and Play4. Marathon provides a REST API for
starting, stopping, and scaling these applications (scale‑out and scale‑in).

Chronos is a distributed and fault‑tolerant cron/job scheduler. Chronos supports custom Mesos ex‑
ecutorsaswell as thedefault commandexecutorsh. UsingaRESTful JSONAPIoverHTTP frameworks
and applications can communicate with Chronos.

Writing your own framework

Writing your own framework on top of Mesos is quite easy. First you create your scheduler in C, C++,
Java/Scala, or Python by inheriting from the corresponding Scheduler class.

import mesos
3Run Ruby on Rails on Mesos
4Run Play on Mesos

Abhishek Tiwari 10.59350/7awbn-2mm29 2014‑02‑27

http://mesosphere.io/learn/run-ruby-on-rails-on-mesos/
http://mesosphere.io/learn/run-play-on-mesos/
https://doi.org/10.59350/7awbn-2mm29


Building Distributed Systems with Mesos 5

# Example using Python
class MyScheduler(mesos.Scheduler):

# Override Scheduler Functions like resourceOffers, etc.

import org.apache.mesos.MesosSchedulerDriver;
import org.apache.mesos.Protos;
import org.apache.mesos.Protos.*;
import org.apache.mesos.Protos.TaskID;
import org.apache.mesos.Scheduler;
import org.apache.mesos.SchedulerDriver;

public class MyScheduler implements Scheduler {
// Override Scheduler Functions like resourceOffers, etc.

}

Then you write your framework executor by inheriting from the Executor class.

import mesos
# Example using Python
class MyExecutor(mesos.Executor):

# Override Executor Functions such as launchTask, etc.

import org.apache.mesos.Executor;
import org.apache.mesos.ExecutorDriver;
import org.apache.mesos.MesosExecutorDriver;
import org.apache.mesos.Protos.Environment.Variable;
import org.apache.mesos.Protos.*;
import org.apache.mesos.Protos.TaskID;
import org.apache.mesos.Protos.TaskStatus;

// Example using Java
public class MyExecutor implements Executor {

// Override Executor Functions such as launchTask, etc.
}

Finally install your framework on Mesos cluster which requires placing your framework somewhere
that all slaves on the cluster can get it from. If you are running HDFS, you can put your framework
executor into HDFS.

Running Distributed Systems OnMesos

Apache Mesos can be used as an SDK for building fault‑tolerant distributed frameworks on top of it5.
You can port existing distributed systems or new distributed applications on Mesos using a custom
framework wrapper in less than 100‑300 lines (approach described in previous section) without in‑
volving any networking related code.

5Apache Mesos as an SDK for Building Distributed Frameworks

Abhishek Tiwari 10.59350/7awbn-2mm29 2014‑02‑27

http://strataconf.com/strata2014/public/schedule/detail/31869
https://doi.org/10.59350/7awbn-2mm29


Building Distributed Systems with Mesos 6

Figure 3:Mesos and Distributed Frameworks as Graph. Image Credits Paco Nathan.

When porting existing distributed system like Hadoop or Storm, challenging bit seems to be themap‑
ping the distributed system specific logic (Distributed system graph) onScheduler andExecutor
(Mesos graph). For instance when running Hadoop on Mesos 6 7,

• Hadoop’sJobTracker represents both a scheduler and a long‑running process
• Mesos Scheduler is a thin layer top of Hadoop Scheduler.
• Hadoop TaskTrackers are executors.
• Hadoop Job is collection of map and reduce tasks.
• Hadoop Task is one unit of work for a Job (map or reduce)
• Hadoop Slot is a task executor (map or reduce )
• Hadoop JobTracker launches TaskTrackers for each Job (fixed or variable slot policy)
• Hadoop Task scheduling is left to the underlying scheduler (i.e., Hadoop FairScheduler)

Similarly for Storm, we have tomapNimbus (JobTracker of Storm) and the Supervisors (TaskTrackers
of Storm) on Scheduler and Executor (Mesos graph).

6Learning Apache Mesos
7Hadoop on‑mesos

Abhishek Tiwari 10.59350/7awbn-2mm29 2014‑02‑27

http://strata.oreilly.com/2014/01/learning-apache-mesos.html
http://www.slideshare.net/HenryCai2/hadoop-onmesos
https://doi.org/10.59350/7awbn-2mm29

	Single compute unit
	Who is using Mesos?
	Mesos Internals
	Mesos Architecture
	How Mesos Works?
	Mesos Frameworks
	Writing your own framework
	Running Distributed Systems On Mesos

