Cache Me If You Can: Taming the
Caching Complexity of Microservice
Call Graphs

Abhishek Tiwari

Citation: A. Tiwari, ”Cache Me If You Can: Taming the Caching Complexity
of Microservice Call Graphs”, Abhishek Tiwari, 2024.
doi:10.59350/cq9aw-a9821

Published on: December 17,2024


https://orcid.org/0000-0003-2222-2395
https://doi.org/10.59350/cq9aw-a9821

Cache Me If You Can: Taming the Caching Complexity of Microservice Call Graphs 1

As microservices architectures have become increasingly prevalent in modern software systems,
they’ve brought both tremendous benefits and significant challenges. One of the most pressing chal-
lenges has been maintaining performance at scale while dealing with complex service dependencies
and network communication overhead. Today, | want to explore MuCache, an innovative framework
recently presented by Zhang et. al at USENIX NSDI 2024 that tackles this challenge head-on by
providing automatic and coherent caching for microservices call graphs (see [1]).

The Microservice Caching Dilemma

Before diving into MuCache, it’s worth understanding why caching in microservices architecture is
simultaneously critical and challenging. In a monolithic application, function calls between compo-
nents are straightforward and fast. However, in a microservices architecture, these same interactions
become network of calls, introducing significant latency and resource overhead. This is why compa-
nies like Alibaba have found that without effective caching, their service call graphs can reach depths
of more than 40 calls. With proper caching, they can reduce this to just 3 calls for many requests.

While caching is a powerful technique, it also presents several challenges in the context of microser-
vices. Implementing caching in microservices architectures has traditionally been fraught with diffi-
culties.

Cache Coherence

The most significant challenge is keeping caches coherent. Unlike traditional cache coherence where
you’re dealing with individual read/write operations, microservices depend on complex webs of
downstream service calls and state changes. Every time data is updated in a service’s database, all
caches holding that data need to be updated or invalidated. This coordination is difficult, especially
in a distributed microservice environment.

Consider the complexity of managing a social network’s home timeline - a feature we’re all familiar
with from platforms like Twitter. The caching challenge here runs deeper than it might first appear.
A user’s timeline isn’t just a simple list of posts; it’s a carefully orchestrated composition of multiple
data points and business rules. The cache invalidation puzzle becomes particularly fascinating when
you consider all the different factors that could necessitate refreshing the cached timeline.

Think about all the moving parts: a followee adds a new post, another user updates their privacy
settings, or a post that appeared in the timeline gets deleted. Even more intriguingly, the ranking
algorithm might be tweaked to better promote certain types of content. What makes this especially
challenging is that many of these changes originate from services that never directly interact with

Abhishek Tiwari 10.59350/cq9aw-a9821 2024-12-17


https://doi.org/10.59350/cq9aw-a9821

Cache Me If You Can: Taming the Caching Complexity of Microservice Call Graphs 2

the timeline generation service itself. They ripple through the system, affecting the timeline’s validity
through complex chains of dependencies.

But here’s where it gets interesting: even when certain changes invalidate the final timeline response,
portions of the underlying data might still be perfectly valid and cacheable. For instance, if a user
changes their profile picture, we don’t necessarily need to recompute their post content or invalidate
cached follower relationships. This granularity in caching strategy can make the difference between
a system that merely works and one that truly performs at scale. This rewrite maintains the technical
depth while making it more conversational and relatable, using familiar examples to illustrate the
complex concepts. It also emphasises the nuanced nature of the caching challenge while making it
more accessible to readers.

Limited State-of-the-Art

When faced with microservice caching challenges, developers today typically find themselves choos-
ing between three suboptimal approaches.

First, they might roll up their sleeves and craft custom coherence protocols specific to their applica-
tion. While this hands-on approach offers control, it often leads to brittle solutions that are riddled
with edge cases and resist adaptation as systems evolve.

The second common path is to focus exclusively on caching at the backend storage layer. While this
approach is straightforward, it misses a crucial opportunity: the ability to short-circuit lengthy call
chains before they traverse the entire service graph. By the time a request reaches the backend, we’ve
already incurred the overhead of multiple network hops and service invocations.

Finally, many teams simply wave the white flag on strict consistency guarantees and implement ba-
sic time-to-live (TTL) caching mechanisms. While this approach is simple to implement, it essentially
trades correctness for performance. Users might see stale data, and developers are left with the un-
enviable task of tuning TTL values - too short and you lose the benefits of caching, too long and you
risk serving outdated information.

Current service mesh frameworks like Dapr, Envoy, and Istio provide robust solutions for service dis-
covery, load balancing, and fault tolerance, but they’ve largely stayed away from inter-service caching.
The complexity of maintaining cache coherence across a dynamic service graph has made this a par-
ticularly challenging problem to solve in a general way.

Key Requirements

When designing a caching solution for microservice architectures, we must carefully balance several
critical requirements. First and foremost stands correctness - any caching system we implement must

Abhishek Tiwari 10.59350/cq9aw-a9821 2024-12-17


https://doi.org/10.59350/cq9aw-a9821

Cache Me If You Can: Taming the Caching Complexity of Microservice Call Graphs 3

act as atransparent performance optimization layer. It should never introduce new behaviors or alter
the application’s existing semantics. Think of it like a guitarist’s effects pedal - it should enhance the
sound without changing the fundamental melody.

Equally crucial is the requirement for non-blocking operation with minimal overhead. In the high-
stakes world of distributed systems, we can’t afford to introduce delays on the critical path of request
processing. A caching layer must operate with the lightness of a shadow, adding performance benefits
without imposing significant costs. Any synchronisation or coordination should happen behind the
scenes, away from the main request flow.

The third vital requirement addresses the dynamic nature of modern microservice architectures. Un-
like traditional monolithic applications where the component relationships are fixed at compile time,
microservice call graphs are often determined at runtime. A single request might take different paths
through the service mesh depending on various factors - user context, system load, feature flags, or
business rules. A caching solution must gracefully handle this dynamism, adapting to changing call
patterns without requiring predefined knowledge of the service topology.

Enter MuCache

MuCache tackles these challenges by providing a framework that automatically manages caching
across microservice graphs while maintaining strong consistency guarantees. The key insight of Mu-
Cache is to push cache management off the critical path of request processing while still maintaining
correctness through careful tracking of dependencies and invalidations.

The system works by introducing three key components (see following illustration):

1. Wrappers that intercept service invocations and database operations
2. Cache managers that track dependencies and handle invalidations
3. The actual cache storage (which can be any standard cache like Redis)

Wrappers (W): Special functionsin the sidecar (see [2]) that intercept service invocations and database
operations. They check the cache before invocation and return the result if there is a cache hit. Wrap-
pers also supply context information to the cache manager, such as input arguments, request start
and end timestamps, and the keys that the request reads and writes

Cache Managers (CMs): Standalone processes that receive information from the wrappers and decide
when to save or invalidate the cache. Each service has its own cache manager collocated with it. The
wrappers do not wait for any responses from the cache manager, ensuring that the client is never
blocked

Datastore: The actual cache used, such as Redis or Memcached. For now only linearisable datastores
are supported.

Abhishek Tiwari 10.59350/cq9aw-a9821 2024-12-17


https://doi.org/10.59350/cq9aw-a9821

Cache Me If You Can: Taming the Caching Complexity of Microservice Call Graphs 4

. lendpointl (RO) Node 2

;/endpointZ

/... /\

=\Service2 W —-—

: R, —
hs

Clients

-
-—
. - - .
T T T B

Figure 1: MuCache’s Architecture. (C) denote caches, (CM) cache managers, (W) wrappers, and (D)
the datastores. Wrappers are interceptor functions in the sidecar of each service. Solid arrows
denote baseline communication while dashed arrows and blue com- ponents denote additions by
our system. RO means read-only. Image credits Zhang et. al

What makes MuCache particularly interesting is its approach to consistency. Instead of trying to main-
tain strict consistency across all services (which would require expensive synchronization), it intro-
duces a novel correctness condition based on client-observed behavior. This allows for reordering
of operations between independent clients while still maintaining consistent behaviour from each
client’s perspective.

The Protocol

At its core, MuCache operates on a simple principle: identify which service endpoints are read-only
and cache their responses intelligently. Developers start by declaring which methods in their service
APIs never modify system state. For services using REST, MuCache can simplify this process by auto-
matically treating GET endpoints as read-only - a common convention in REST architectures.

MuCache’s lazy-invalidation cache coherence protocol, designed specifically for the dynamic nature
of microservices graph. Mucache protocol brings two important features to the table. First, it elimi-
nates the need for blocking operations during cache access. Whether you hit or miss the cache, your
request keeps moving forward without waiting for other requests to complete. This design choice
not only optimizes the happy path of cache hits but also ensures that cache misses incur minimal,
predictable overhead.

The second is how MuCache maintains consistency. The protocol isn’t just fast - it’s provably correct,
offering a powerful guarantee: any behavior you observe in a system with MuCache enabled could

Abhishek Tiwari 10.59350/cq9aw-a9821 2024-12-17


https://doi.org/10.59350/cq9aw-a9821

Cache Me If You Can: Taming the Caching Complexity of Microservice Call Graphs 5

have occurred in the original system without caching. This means developers can confidently add
caching without worrying about introducing new, unexpected behaviours into their applications.

The Implementation Details

MuCache’s implementation is particularly elegant in how it handles the complexity of microservices
call graph. When a service makes a read-only call to another service, the wrapper first checks if the
resultis cached. If there’s a cache hit, it returns immediately. If not, it forwards the call while tracking
all keys read during the request’s execution.

The cache manager maintains two critical pieces of state: a saved map that tracks which upstream
services have cached which responses, and a history of calls and invalidations. When a write occurs,
the cache manager uses this information to determine which cached entries need to be invalidated.

What’s particularly clever about this design is how it handles the “diamond pattern” problem - where
a service might access the same downstream service through multiple paths. MuCache tracks the
set of services visited during request processing and avoids using cached entries if they depend on a
service that has already been visited in the current request path. This prevents consistency violations
that could occur from accessing stale data through different paths.

The MuCache prototype implementation comprises roughly 2k LoC of Go and authors have made it
available on Github.

Performance and Real-World Impact

The performance improvements demonstrated by MuCache are impressive. In testing with real-world
applications, it showed:

« Up to 2.5x reduction in median latency
+ Up to 1.8x reduction in tail latency

« Up to 60% increase in throughput

+ Only 13% CPU overhead on average

What’s particularly noteworthy is how MuCache performs compared to both backend-only caching
and TTL-based approaches. It consistently outperforms backend-only caching while staying close
to the theoretical maximum performance of TTL-oo (infinite TTL) approaches, but without sacrificing
consistency guarantees.

Abhishek Tiwari 10.59350/cq9aw-a9821 2024-12-17


https://github.com/eniac/mucache
https://doi.org/10.59350/cq9aw-a9821

Cache Me If You Can: Taming the Caching Complexity of Microservice Call Graphs 6

Fanout Proxy Q_’O
Chain Fanin

Figure 2: MuCache tested four synthetic patterns: proxy (simple two-tier), chain (sequential),

fan-out (one-to-many), and fan-in (many-to-one). While proxy established baseline overhead
metrics, chain patterns showed 2.6-3.1x lower median latency, fan-out improved tail latency by 1.6x,
and fan-in achieved 1.75x higher throughput.

The system also shows excellent scalability characteristics. When testing with sharded services, Mu-
Cache maintained its performance advantages while scaling linearly with the number of shards. This
is achieved because cache managers of different shards only communicate invalidations in the back-
ground, keeping the critical path clear of cross-shard synchronization.

Practical Considerations and Limitations

While MuCache represents a significant improvement in caching, it’s important to understand its lim-

itations and requirements.

Linearisable Datastores

The system requires linearisable datastores, which might not be available in all environments. It also
needs to be able to intercept all service communications and database operations, which means it
needs to be integrated with the service mesh layer.

Linearizability ensures that operations appear to take effect atomically at a single point in time be-
tween their invocation and completion. In practical terms, this means that once a write completes,
all subsequent reads must see that write’s effects.

While this requirement ensures strong consistency guarantees, it limits MuCache’s compatibility
with many popular datastores. For instance, many NoSQL databases like Cassandra or MongoDB,
in their default configurations, offer eventual consistency rather than linearizability. Even some
SQL databases, when configured for high availability or geographic distribution, may sacrifice
linearisability for better performance or partition tolerance.

Abhishek Tiwari 10.59350/cq9aw-a9821 2024-12-17


https://doi.org/10.59350/cq9aw-a9821

Cache Me If You Can: Taming the Caching Complexity of Microservice Call Graphs 7

Sidecar Overhead

The current implementation is built on top of Dapr. This makes integration straightforward for ser-
vices already using Dapr but might require additional work for services using other communication
mechanisms. The reliance on service mesh sidecars presents an interesting tension in MuCache’s de-
sign. As Zhu et. al (see [3]) revealed significant performance penalties associated with service mesh
sidecars - with sobering numbers like 269% higher latency and 163% increased CPU utilisation - Mu-
Cache’s actual performance data tells a nuanced story about this trade-off.

MuCache’simplementation shows that the overhead can be well worth the benefits in many scenarios.
The system reports only a 13% increase in CPU usage while delivering up to 2.5x reduction in median
latency and 60% increase in throughput. This suggests that the caching benefits can substantially
outweigh the sidecar overhead, particularly for applications with expensive service-to-service calls
or complex call graphs.

However, this raises important consideration. In systems where service-to-service calls are relatively
lightweight or where the call graph is shallow, the sidecar overhead might eat into the potential ben-
efits of caching. The decision to implement MuCache should therefore consider the specific charac-
teristics of the application - particularly the cost of service calls relative to the sidecar overhead.

GC Overhead

Another practical consideration is the memory overhead of tracking dependencies. While the paper
shows this overhead is minimal (less than 0.4% of cache size on average), systems with extremely high
request rates or complex dependency graphs might need to tune the garbage collection parameters
to maintain reasonable memory usage.

Cache Poisoning

Lastly, The introduction of any caching layer in a distributed system creates potential security vul-
nerabilities, and cache poisoning represents a particularly concerning threat for inter-service caching
systems like MuCache. In traditional systems, cache poisoning typically affects a single service or end-
point, but in a microservices architecture with inter-service caching, the implications could be more
severe due to the interconnected nature of services.

In MuCache’s context, the risk surface is amplified because cached results can be reused across dif-
ferent request paths. A compromised service could potentially inject malicious data into the cache,
which would then be served to other services without re-validation. This could be particularly con-
cerning because MuCache’s design priorities performance by avoiding synchronous validation on the
critical path.

Abhishek Tiwari 10.59350/cq9aw-a9821 2024-12-17


https://doi.org/10.59350/cq9aw-a9821

Cache Me If You Can: Taming the Caching Complexity of Microservice Call Graphs 8

Future Direction

MuCache represents a step forward in making microservices architectures more efficient and easier
to manage. Its approach to automatic cache coherence could become a standard feature of service
mesh implementations, similar to how automatic retry logic and circuit breakers are today.

The system’s design also provides valuable insights for the broader field of distributed systems. The
approach to maintaining consistency through careful tracking of dependencies while avoiding syn-
chronization on the critical path could be applied to other distributed caching problems beyond mi-
croservices.

For practitioners, MuCache offers a path to achieving the performance benefits of aggressive caching
without the complexity of manual cache management or the consistency risks of simple TTL-based
approaches. This could be particularly valuable for organizations in the middle ground - too large to
stick with a monolithic architecture but not large enough to invest in building custom caching solu-
tions like major tech companies have done.

Conclusion

MuCache demonstrates that it’s possible to achieve automatic, consistent caching in microservices
architectures without sacrificing performance or requiring complex application modifications. Its
careful balance of consistency guarantees and performance optimisation, combined with practical
implementation considerations, makes it a compelling approach for the challenging problem of mi-
croservices caching.

As microservices architecture continue to evolve and become more complex, tools like MuCache that
help manage this complexity while maintaining performance will become increasingly important.
Whether through direct adoption of MuCache or through incorporation of its ideas into other tools
and framework.

References

[1] H. Zhang, K. Kallas, S. Pavlatos, and V. Liu, “A General Framework for Caching in Microservice
Graphs,” 2024, USENIX Association. Available: https://www.usenix.org/conference/nsdi24/pre
sentation/zhang-haoran

[2] A. Tiwari, “A sidecar for your service mesh,” 2017, Abhishek Tiwari. doi: 10.59350/89sdh-7xh23.

[3] X.Zhu et al., “Dissecting Overheads of Service Mesh Sidecars,” 2023, Association for Computing
Machinery. doi: 10.1145/3620678.3624652.

Abhishek Tiwari 10.59350/cq9aw-a9821 2024-12-17


https://www.usenix.org/conference/nsdi24/presentation/zhang-haoran
https://www.usenix.org/conference/nsdi24/presentation/zhang-haoran
https://doi.org/10.59350/89sdh-7xh23
https://doi.org/10.1145/3620678.3624652
https://doi.org/10.59350/cq9aw-a9821

	The Microservice Caching Dilemma
	Cache Coherence
	Limited State-of-the-Art

	Key Requirements
	Enter MuCache
	The Protocol
	The Implementation Details
	Performance and Real-World Impact
	Practical Considerations and Limitations
	Linearisable Datastores
	Sidecar Overhead
	GC Overhead
	Cache Poisoning

	Future Direction
	Conclusion
	References

