
Class and Objects in R: S3 Style

Abhishek Tiwari

Citation: A. Tiwari, ”Class and Objects in R: S3 Style”, Abhishek Tiwari,
2014. doi:10.59350/3by2m-e2w34

Published on: March 06, 2014

https://orcid.org/0000-0003-2222-2395
https://doi.org/10.59350/3by2m-e2w34

Class and Objects in R: S3 Style 1

When it comes to R Programming, I guess you can always consider me as a beginner. Although I have
known basic R for quite some time now, I never tried object‑oriented programming in R. Recently I
started to explore someobject‑oriented stuff inR. Tomy surprise, R has threeobject‑oriented systems:
S3, S4 and R5. Creator of ggplot, Hadley Wickham maintains a brief description of all three types of
system S3, S4 and R5.

Unfortunately there is not much documentation or guideline about implementing S3 style class and
objects in R. Most of tutorials and book chapters cover how to use relatively new S4 style system as S4
has some nice features such as method dispatch on multiple arguments, consistency check, control
over inheritance patterns. Despite the goodness of S4 system, as R programer you have to learn S3
becausemost of core R packages make heavy use of S3 and also S4 systems has it’s own problems.

Rather than going into detailed comparison of S3 vs S4, I would like to introduce my workflow for S3
system(Pleaseconsider it asdocumentationanddon’t forget todropacomment if you findsomething
wrong in this post). Here is what I usually do,

1. Creating objects
2. Defining methods

Creating objects

A S3 object is nothing but a R object with an additional ‘class’ attribute, a character vector giving the
names of the classes.

Simple way

So given a R object (vector, factor, matrix, array, list , data.frame or anything else) you can easily
convert your R object in object of certain class type by simply attaching the ‘class’ attribute. If object
belongs to one type of class cname then

attr(your.r.object, "class") <- "cname"

class(your.r.object) <- "cname"

your.class.object <- structure(your.r.object, class = "cname")

else if object belongs to many class types cname1, cname2 and so on then,

attr(your.r.object, "class") <- c("cname1", "cname1", ..)

class(your.r.object) <- c("cname1", "cname1", ..)

Abhishek Tiwari 10.59350/3by2m-e2w34 2014‑03‑06

http://had.co.nz/ggplot2/
http://adv-r.had.co.nz/S3.html
http://adv-r.had.co.nz/S4.html
http://adv-r.had.co.nz/R5.html
https://doi.org/10.59350/3by2m-e2w34

Class and Objects in R: S3 Style 2

your.class.object <- structure(your.r.object, class = c("cname1", "cname1"
, ..))

So for example,

Output on R console
> my.r.obj <- c(1:10)
> class(my.r.obj)
[1] "integer"
> # That was in-built type, 'integer'
> class(my.r.obj) <- c("real", "positive")
class(my.r.obj)
[1] "real" "positive"
Object belongs to class type both 'real' and 'positive'

Constructor function

Otherwise you can use a class type cunstructor function to create new object of certain class type,

Constructor function for the class
cname <- function(x, ...) {
args <- list(...)
Do something here with x, args and put in something
object <- list(attribute.name = something, ..)
class(object) <- "cname"
return (object)

}

Creating object of class type
my.object <- cname(x, ...)

To access object attributes, my.object$attribute.name
my.object$attribute.name

As matter fact S3 System can be used to generalize class constructor function and definition itself,
more about that later. ##DefiningmethodsWhen dealingwith S3 systemwe are interested in creating
methods of generic functions. In S3 system, generic functions work by naming convention. So for
instance, ‘print’ is a generic function with alternative definitions for different class types. You can see
all existing definitions for a generic function using methods(). Format looks like a list of gname
.cname (gname is generic function name and cname is class name), so for print there will be print.
default, print.ts, print.table and so on.

So when you define a new S3 class constructor function cname, you need to define corresponding
methods such as print.cname, plot.cname, ggplot.cname etc. Now generic function dis‑
patches the appropriatematching S3methodwithUseMethod() based on the type of the first argu‑
ment (S4 system uses multiple arguments). If no method is defined, as fall back the default method

Abhishek Tiwari 10.59350/3by2m-e2w34 2014‑03‑06

https://doi.org/10.59350/3by2m-e2w34

Class and Objects in R: S3 Style 3

.default will be used like print.default, plot.default etc.

methods(gname)

methods(print)
more than 150 definitions for print

There are generic functions suchasprint, plot etc thoseareS3 ready,whichmean they already include
UseMethod(). For instance,

Output on R console
> print
function (x, ...)
UseMethod("print")
<environment: namespace:base>
> plot
function (x, y, ...)
{

if (is.function(x) && is.null(attr(x, "class"))) {
if (missing(y))

y <- NULL
hasylab <- function(...) !all(is.na(pmatch(names(list(...)),

"ylab")))
if (hasylab(...))

plot.function(x, y, ...)
else plot.function(x, y, ylab = paste(deparse(substitute(x)),

"(x)"), ...)
}
else UseMethod("plot")

}
<environment: namespace:graphics>

For others you may need to define your own generic function with UseMethod(). For example
in package ggplot function ggplot is generic (it offers only two methods ggplot.data.frame
and ggplot.default) but not S3 ready. Similarly qplot is not generic. So if you want to extend
ggplot andqplot for a new class type youmay need to define a customgeneric function. How you
will do that? So here is stepwise instruction,

1. Check if your generic function is S3 ready (whether or not generic function includes
UseMethod()), else

2. Create a function named gname . In the function body, call UseMethod("gname").
3. For each custom class type, create a function called . with first argument as an object of class

classname.

Step 2
gname <- function (x, ...) {
if(is.null(attr(x, "class"))){

args <- list(...)

Abhishek Tiwari 10.59350/3by2m-e2w34 2014‑03‑06

https://doi.org/10.59350/3by2m-e2w34

Class and Objects in R: S3 Style 4

#do something here for shake
}
else UseMethod("gname", x) # x is object

}
Step 3
gname.default <- gname(x)

gname.cname1 <- function(x, ...) {
First argument is an object of class
args <- list(...)
do something here

}

gname.cname2 <- function(x, ...) {
if(some condition is true) {
Do something here
}
Only if 'class' attribute of an S3 object is a vector
else NextMethod()

}

gname.cname3 <- function(x, ...) {
First argument is an object of class
args <- list(...)
do something here

}

NextMethod() function provides a simple inheritance mechanism by invoking the next method
only if ‘class’ attribute of an S3 object is a vector. NextMethod(), should be used in amethod called
by UseMethod(). From Hadley’s notes on S3

NextMethod() works like UseMethod() but instead of dispatching on the first element of
the class vector, it will dispatch based on the second (or subsequent) element.

A simple example,

Constructor function for class
animal <- function(x) {
object <- list(name = x)
class(object) <- x
return (object)

}

Generic methods
milk <- function (x) {
if(is.null(attr(x, "class"))){

print("no animal no milk")
}
else UseMethod("milk", x)

}

Abhishek Tiwari 10.59350/3by2m-e2w34 2014‑03‑06

https://doi.org/10.59350/3by2m-e2w34

Class and Objects in R: S3 Style 5

milk.default <- milk(x)

milk.cow <- function(x) {
Only if class of an S3 object is a vector
NextMethod()

}

milk.goat <- function(x) {
First argument is an object of class classname
print(x$name)
print("Yummy milk mix")

}

milk.donkey <- function(x) {
First argument is an object of class classname
print(x$name)
print("Milk mix, not again")

}

Creating object of class type
> a <- animal(c("cow","goat"))
> milk(a)
[1] "cow" "goat"
[1] "Yummy milk mix"
> b <- animal(c("cow","donkey"))
> milk(b)
[1] "cow" "donkey"
[1] "Milk mix, not again"
> c <- animal(c("cow"))
> milk(c)
Error in NextMethod() : no method to invoke
> milk("me")
[1] "no animal no milk"

Extending the Internal generics

Many primitive (written in C) and internal functions in R are generic and allow methods to be
written for new class types. For example, [, [[, $, length, c , unlist , unlist, cbind,
rbind can be extended for a new class type. To see a list of primitives which are internal check
.S3PrimitiveGenerics and for all internal generic function ?InternalMethods. Note
internal dispatch only occurs on objects, that is those for which is.object returns true. Again from
Hadley’s notes on S3,

Internal generic have a slightly different dispatch mechanism to other generic functions: before
trying the defaultmethod, theywill also try dispatching on themode of an object, i.e.mode(x).

Abhishek Tiwari 10.59350/3by2m-e2w34 2014‑03‑06

https://doi.org/10.59350/3by2m-e2w34

Class and Objects in R: S3 Style 6

An example of internal generic method adopted from Stackoverflow,

Constructor function for class
myclass <- function(x, n) {
structure(x, class = "myclass", n = n)

}

Generic methods to extend the 'c' and '['
c.myclass <- function(..., recursive = FALSE) {
dots <- list(...)
ns <- sapply(dots, attr, which = "n")
classes <- rep("myclass", length(dots))
res <- structure(unlist(dots, recursive = FALSE), class = classes)
attr(res, "n") <- ns
return (res)

}

`[.myclass` <- function (x, i) {
y <- unclass(x)[i]
ns <- attr(x, "n")[i]
class(y) <- "myclass"
attr(y, "n") <- ns
return (y)

}

Creating object of class type
> x1 <- myclass(1, 5)
> x2 <- myclass(2, 6)
> c(x1, x2)
[1] 1 2
attr(,"class")
[1] "myclass" "myclass"
attr(,"n")
[1] 5 6
> c(x1, x2)[2]
[1] 2

Generalizing the constructor functions

Now coming back to class constructor functions, for a given class constructor function can be gener‑
alized so that it can accommodate different type of forms for the class.

Generalised Constructor function for class geom
geom <- function(x, ...) UseMethod("geom")

geom.default <- function(x, ...) {
object <- list(area = x^2)
class(object) <- "geom"
return (object)

Abhishek Tiwari 10.59350/3by2m-e2w34 2014‑03‑06

http://stackoverflow.com/questions/4241229/how-to-write-a-c-function-for-custom-s3-class-in-r
https://doi.org/10.59350/3by2m-e2w34

Class and Objects in R: S3 Style 7

}

geom.rectangle <- function(x, ...) {
args <- list(...)
object <- list(area = x*as.numeric(args[1]))
class(object) <- "geom"
return (object)

}

geom.triangle <- function(x,...) {
args <- list(...)
object <- list(area = (x*as.numeric(args[1])*as.numeric(args[2]))/2)
class(object) <- "geom"
return (object)

}

> my.object1 <- geom(3)
> my.object1
$area
[1] 9

attr(,"class")
[1] "geom"
> my.object2 <- geom.rectangle(3,4)
> my.object2
$area
[1] 12

attr(,"class")
[1] "geom"
> my.object3 <- geom.triangle(3,4,5)
> my.object3
$area
[1] 30

attr(,"class")
[1] "geom"

Abhishek Tiwari 10.59350/3by2m-e2w34 2014‑03‑06

https://doi.org/10.59350/3by2m-e2w34

	Creating objects
	Simple way
	Constructor function
	Extending the Internal generics
	Generalizing the constructor functions

