
CloudFront Design Patterns And Best
Practices

Abhishek Tiwari
 

 

Citation: A. Tiwari, ”CloudFront Design Patterns And Best Practices”,
Abhishek Tiwari, 2013. doi:10.59350/bksfp-rkm49

Published on: January 31, 2013

https://orcid.org/0000-0003-2222-2395
https://doi.org/10.59350/bksfp-rkm49


CloudFront Design Patterns And Best Practices 1

CloudFront is a content delivery service offered by Amazon web services(AWS). CloudFront serves
static contents (images, audio, video etc) using a global network of more than 28+ edge locations.
Using these edge locations, CloudFront accelerates delivery of content by serving the cached copies
of the content objects froma nearest edge location. Service is highly reliable and designed to be used
with Amazon S3 or any other custom origin server.

CloudFront can also serve thedynamic or interactive content but current support is quite limited com‑
pared to similar services such as Akamai. Given that CloudFront is more cost effective than Akamai 1

and service is evolving very rapidly in terms of features, I would highly recommend the CloudFront.

There are some interestingusespatterns andbest practicesdevelopedaround theCloudFront. Before
wedeepdive intoCloudFrontdesignpatterns andbest practices itwill benice tohave some familiarity
with the basic CloudFront concepts.

Cloudfront Distribution

ACloudFront (CF) distribution basically identifies, distributes or caches the content objects to edge lo‑
cations. A CloudFront distribution consists a collection of origin servers and rules to define the origin
or cache behavior. An origin server is a original source of content, it can be a static file store like Ama‑
zon S3 or a dynamic content server. Currently CloudFront supports only 10 cache behaviors for each
CloudFront distribution. Note that each cache behavior is unique and it can be only associated with
only one origin server. Ability to associate one cache behavior to multiple origin server is currently
not available. Off course you can associate one origin server tomultiple cache behaviors. CloudFront
distribution also supports the versioning of the content objects using query strings.

1Truth be told, Amazon CloudFront has a more open pricing model compared to Akamai.

Abhishek Tiwari 10.59350/bksfp-rkm49 2013‑01‑31

https://doi.org/10.59350/bksfp-rkm49


CloudFront Design Patterns And Best Practices 2

Figure 1: CloudFront‑Origin and Cache Behavior

Depending on content, CloudFront distribution can be download or streaming distribution. Stream‑
ing distribution is normally used for on‑demand video/audio streaming. Download distribution is
used to serve other forms of non‑streaming contents like images, CSS, JavaScripts, HTML pages etc.
Video/Audio content can also be served by download distribution assuming a media player plugin
is active in the browser. Both download and streaming distributions support HTTP/HTTPS protocol.
Depending onmedia server streaming distribution may support additional protocols.

How Cloudfront Works?

When a file is requested to a CloudFront distribution,

1. CloudFront first determines nearest CloudFront edge location.

Abhishek Tiwari 10.59350/bksfp-rkm49 2013‑01‑31

https://doi.org/10.59350/bksfp-rkm49


CloudFront Design Patterns And Best Practices 3

2. Then CloudFront checks cache of the nearest edge location for the requested file. If the file is in
the cache, edge location will serve it.

3. If the files is not in the cache, CloudFront will match the request pattern with origin or cache
behavior andobtain the file fromcorresponding origin server anddistribute it to edge locations.

Pattern‑1: Domain Sharding

All web browsers are capable of downloading resources such as CSS, JavaScripts, images etc in par‑
allel. Traditionally, web browsers limit the number of simultaneous connections a browser canmake
to one domain 23. For instance, Internet Explorer 7 only allows two parallel downloads per server.

Most of the modern browsers have removed the restriction of just two parallel downloads per server.
In fact, Firefox desktop can make eight connections per server, and for Google Chrome and Internet
Explorer 8/9 the limit is now six connections per server.

Still there is lot of opportunity to improve. For instance, a normal e‑commerce web page downloads
more than 80+ resources during a single page view ‑ eventually slowing down the page load time. This
is where domain sharding technique comes very handy.

Domain sharding uses two or more hostnames or CNAME aliases to serve the content from a single
server. Browser treat them as different servers and hence we see increase in limit on parallel down‑
loads. For instance, sharding across 2 CNAME aliases will double the parallel download capabilities.
On average, using two CNAME aliases is best. More than four CNAME aliases will degrade browser
performance resulting in high CPU andmemory uses4.

Using CluouFront CNAME alias feature you can map multiple CNAMEs on a given CloudFront distri‑
bution (upto 10 CNAMEs). For CNAME aliasing we can use Amazon Route 53. On application side,
you have to enable domain sharding logic which basically requires filtering all your static/media URL
references in your view/template and randomly mapping to one of the CNAME alias. For instance, in
Django you canwrite a Djangomiddleware or template processorwhichwill replace anyMEDIA_URL
or STATIC_URL element in template to one of the CNAME alias.

2Why Domain Sharding is Bad News for Mobile Performance and Users
3Sharding Dominant Domains
4Performance Research, Part 4: Maximizing Parallel Downloads in the Carpool Lane

Abhishek Tiwari 10.59350/bksfp-rkm49 2013‑01‑31

http://shop.cottonon.com/shop/women/
http://www.mobify.com/dev/domain-sharding-bad-news-mobile-performance/
http://www.stevesouders.com/blog/2009/05/12/sharding-dominant-domains/
http://www.yuiblog.com/blog/2007/04/11/performance-research-part-4/
https://doi.org/10.59350/bksfp-rkm49


CloudFront Design Patterns And Best Practices 4

Figure 2: Domain Sharding with CloudFront

Please note, currently domain sharding is not possible for HTTPS requests due to SSL certificate mis‑
match issues. To bypass this limitation you can use two different CloudFront distributions with same
origin servers and rules.

Pattern‑2: Versioning

In CloudFront cache invalidation is a costly operationwith various restrictions. First of all, you can run
only 3 invalidation requests at any given time. Second, in each validation request you can included
maximum of 1000 files. Third, invalidation takes time propagate across all edge locations (5~10 min‑
utes). The change in CloudFront distribution will eventually be consistent but not immediately. In
terms of cost, in a given month invalidation of 1000 files is free after that you have to pay per file for
each file listed in your invalidation requests.

Content versioning is oneof thebestway toavoid the invalidation related issues. CloudFront supports
versioning using query strings. To enable query string based versioning, youhave to turn on “Forward
Query Strings” for a given cache behavior. After that CloudFront will pass the full object path (includ‑
ing the query string) to the origin server. CloudFront will use full object path to uniquely identify the

Abhishek Tiwari 10.59350/bksfp-rkm49 2013‑01‑31

https://doi.org/10.59350/bksfp-rkm49


CloudFront Design Patterns And Best Practices 5

content object in cache. So for invalidation of versioned object you have to provide full object path
like /static/profile.png?versionID=123. On origin server side, server will interpret the
query string and serve the definitive version of the content object.

It is suggested thatwhen“ForwardQueryStrings” is turnedoffCloudFront cachingperformance isbet‑
ter. If query based versioning don’t work for you then you can use version based file naming without
compromising the CloudFront caching performance. For versioning you can use one or combination
of following approaches,

1. File name plus query string with version /static/profile.png?versionID=123.

2. File name with version prefix/suffix /static/profile_v123.png.

3. File name as unique key based on file content 712vds57tr18929812312enb.png.

FileNamePlusQueryStringWithVersion Thisworksquitewell for all content types includingCSS,
JavaScript, images, videos etc. For application content types such as CSS/JavaScript served from
a custom origin such as application server you can use hash of Git/Hg HEAD of application code as
version‑id. For media content types such as images/videos stored in Amazon S3 you can use x-amz
-version-id header as version‑id.

For example in following illustration, all application servers are running same version of application
code. 468df6b is first 7 chars of hash of GitHEAD of application code. Off course your view/template
will need to extract this version‑id from Git HEAD and use when referencing to a CloudFront content
URL. Also, When deploying new version of application code ensure that application server acting as
custom origin for CloudFront is always updated first 5. Moreover when storing reference to Cloud‑
Front objects, for versioned objects you have to store the full object path with version string in your
application database.

5If application server acting as custom origin is not updated first, it can not serve file with appropriate version and hence
chances are it will serve and old file.

Abhishek Tiwari 10.59350/bksfp-rkm49 2013‑01‑31

https://doi.org/10.59350/bksfp-rkm49


CloudFront Design Patterns And Best Practices 6

Figure 3: Object versioning with CloudFront using query string

File Name With Version Prefix/Suffix This works pretty much same as first approach but with‑
out query string and with improved caching. This is more suitable for the application content
types(CSS/JavaScript). New object paths looks like,

1. static/js/main_v468df6b.js

2. static/css/style_v468df6b.css

File Name As Unique Key Based On File Content In this approach file name is an unique hash key
generated from file content. This is suitable for both application andmedia content types.

For images/videos content, before uploading to Amazon S3 you can generateMD5hash for a given file
and use it as file name for uploading the content. Using this approach you can also avoid the content
duplication as it is possible to compare the contents using MD5 hashes.

Abhishek Tiwari 10.59350/bksfp-rkm49 2013‑01‑31

https://doi.org/10.59350/bksfp-rkm49


CloudFront Design Patterns And Best Practices 7

For application content, you can use a pipeline which will minify and combine CSS/JavaScript files
and then generate a single file for CSS/JavaScript with file name generated using MD5 hash of file
content.

Figure 4: Content based hashing and versioning for CloudFront

Pattern‑3: Dynamic Thumbnailing And Encoding

Using customorigin it is possible to dodynamic image thumbnailing and video encoding. An example
workflow depicted in following diagram.

Abhishek Tiwari 10.59350/bksfp-rkm49 2013‑01‑31

https://doi.org/10.59350/bksfp-rkm49


CloudFront Design Patterns And Best Practices 8

Figure 5: Dynamic Thumbnailing and Encoding for CloudFront

Let say user’s browser requested file static/images/thumb/400/300/b723eh0f0df.png
which is basically thumbnail of size 400x300 for image static/images/b723eh0f0df.png
stored in a S3 bucket. Now if this image is already in CloudFront cache then CloudFront will serve
cached thumbnail. Otherwise CloudFront will pass the request to origin server with matching cache
behavior (static/images/thumb/*). In this case application server origin will take the call,
download the original image static/images/b723eh0f0df.png from S3 bucket and generate
thumbnail of requested size and return it to CloudFront distribution to serve. Now depending on size
of original image and quality of thumbnail this whole process can take 50‑500ms. Once generated
we can set longer expiration time for the thumbnail image so that in near‑future CloudFront don’t
request again. As the original image is versioned the thumbnail is also version controlled.

One may argue to pre‑generate thumbnails in bulk for pre‑defined sizes and store in Amazon S3 but
given that now a days content is consumedby deviceswith variable screen size and resolution, practi‑
cally it will be impossible to generate thumbnails in bulk. Not tomention a small change in thumbnail
size will require bulk re‑generation of thumbnails. Dynamic thumbnailing can generate thumbnails

Abhishek Tiwari 10.59350/bksfp-rkm49 2013‑01‑31

https://doi.org/10.59350/bksfp-rkm49


CloudFront Design Patterns And Best Practices 9

optimized for the device on the fly and cache it on CloudFront.

Same kind of workflow can be used for dynamic video/audio encoding. Only difference will be the
required time tocomplete the roundtripwhichwill be longer than image thumbnailing. Unfortunately
dynamic encoding may be practical for very small sized files only. Using Amazon Elastic Transcoder
and Amazon SQSwith a customorigin server wemay improve overall performance but still it is not as
efficient as batch encoding.

Pattern‑4: Compression

Amazon CloudFront can serve both compressed and uncompressed version of files depending
on viewer or browser request. To receive compressed content browser must include Accept-
Encoding: gzip in the request header. If compressed content is available then it will be served
otherwise CloudFront will serve the uncompressed version of the file.

Compressed content is served faster and uses less bandwidth. Unfortunately for compression Cloud‑
Front relies on the origin servers. Amazon S3 does not perform the compression as well. Although
Amazon S3 can store both gzip and non‑gzip versions of the file in the same bucket. When uploading
gzip file to AmazonS3weneed to setContent-Encoding togzip. It is recommended to use a cus‑
tom origin server to compress the content on‑the‑fly. Most of servers like Nginx, Apache etc support
on‑the‑fly gzip compression.

If we are using custom origin server to serve the versioned content (HTML, CSS, and JavaScript) it can
perform compression at same time. Generallymedia files (imgaes/videos) are already compressed so
there is not much scope for additional compression. For media files additional compression can be
achieved by reducing the quality of content during thumbnailing or encoding.

Pattern‑5: Audio/Video Streaming

On‑demand streaming of audio/video content is quite easy using CloudFront. Using CloudFront
signed URLs we can also support paid on‑demand streaming.

Audio/Video streaming using CloudFront requires two CloudFront distributions ‑ one regular down‑
load distribution (HTTP protocol) for the media player and one streaming distribution (RMTP proto‑
col)6.

When you configure CloudFront to distribute media files, CloudFront uses Adobe Flash Media

6Working with Streaming Distributions

Abhishek Tiwari 10.59350/bksfp-rkm49 2013‑01‑31

http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/WorkingWithStreamingDistributions.html
https://doi.org/10.59350/bksfp-rkm49


CloudFront Design Patterns And Best Practices 10

Server 3.5 as the streaming server and streams your media files using Adobe’s Real‑Time Mes‑
saging Protocol (RTMP). CloudFront accepts RTMP requests over port 1935 and port 80.

Figure 6: On‑demand audio/video streaming from CloudFront

To configure the media player with correct path to the file we have to provide streamer URL
plus file path. Streamer URL is base CloudFront URL plus cfx/st. For rmtp://myvideo.
cloudfront.net/cfx/st/videos/myvideo.flv

• streamer : rmtp://myvideo.cloudfront.net/cfx/st

• file : videos/myvideo.flv

• stream URL : rmtp://myvideo.cloudfront.net/cfx/st/videos/myvideo.flv

Pleasenote for publicly available streaming contentweareusingAmazonS3URLsandnotCloudFront
signed URLs.

Abhishek Tiwari 10.59350/bksfp-rkm49 2013‑01‑31

https://doi.org/10.59350/bksfp-rkm49


CloudFront Design Patterns And Best Practices 11

Pattern‑7: Private Content

CloudFront can restrict the access to private content provided by both download and streaming dis‑
tributions. To access the private content end user requires special signed CloudFront URLswhich can
be generated either manually or automatically.

Signed URL7 A signed CloudFront URL restrict access to CloudFront objects. It controls access
based on several parameter such as expiration data and time, valid after data and time, IP address
etc included in signed URL.

When generating signed CloudFron URL for a download distribution content object, youmust use the
full CloudFront URL as the resource. However for streaming distribution content object we only use
the object path of the media file, other details come from the streamer URL.

A complete singed URL contains a base URL, policy statement, signature and CloudFront key‑pair id
and optional parameters such as expiration date and time. When CloudFront receives the request for
a content object it matches the signed URL pattern. If signed URL request is valid then it gives end‑
user access to content object. For download distribution object CloudFront also compares expiration
date and time with date and time of the HTTP request. For streaming distribution object it compares
expiration date and time with date and time of the play event.

Signed URLs can be created either using a custom policy8 or a canned policy9. A Signed URL created
using Canned policy can provide access to only one file. A Signed URL created using custom policy
enables access to one or more files using patterns matching or wild cards.

7Overview of Signed URLs
8Creating a Signed URL Using a Custom Policy
9Creating a Signed URL Using a Canned Policy

Abhishek Tiwari 10.59350/bksfp-rkm49 2013‑01‑31

http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-signed-urls-overview.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-creating-signed-url-custom-policy.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-creating-signed-url-canned-policy.html
https://doi.org/10.59350/bksfp-rkm49


CloudFront Design Patterns And Best Practices 12

Figure 7: On‑demand audio/video streaming of private content from CloudFront

UseCase Let say you are streaming amovie (illustrated above). To access the content for 24 hrs end‑
user requires topay for streaming. Toprotect your videocontent youhave restricted thebucket access
and viewer access. This prevents anyone from bypassing CloudFront signed URLs. Once end‑user
has completed payment steps your application server creates CloudFront signed URL for the video
content and redirects end‑user to download and load the media player in the browser which is pre‑
configured to stream video content using signed URL. Now this video content is accessible for 24 hrs.
After 24 hrs signed URLwill be invalid and end‑user can not play the video. Off course in 24 hrs period
they can play the content as many times he or she want.

A similar workflow can be created for paid content download as described below.

Abhishek Tiwari 10.59350/bksfp-rkm49 2013‑01‑31

https://doi.org/10.59350/bksfp-rkm49


CloudFront Design Patterns And Best Practices 13

Figure 8: Download of private content from CloudFront

Pattern‑8: Live Streaming

Currently CloudFront supports live streamingwith Adobe’s FlashMedia Server 4.510 and IISMedia Ser‑
vices (Smooth Streaming)11. Both solutions live streammedia over HTTP/HTTPS to Apple iOS devices
by streaming in Apple’s HTTP Live Streaming (HLS) format. In addition Adobe’s Flash Media Server
4.5 can stream on demand content to Adobe Flash clients with Adobe’s Real‑Time Messaging Proto‑
col (RTMP). CloudFront accepts RTMP requests over port 1935 and port 80. CloudFront supports the
following variants of the RTMP protocol:

• RTMP— Real‑Time Message Protocol

• RTMPT—RMTP Tunneled (over HTTP/HTTPS)

• RTMPE—RMTP Encrypted

• RTMPTE—RMTP Tunneled Encrypted

Similarly SmoothStreaming ‑ anextensionof IISMediaServices can live streamtoMicrosoftSilverlight
clients over HTTP/HTTPS.

10Live HTTP Streaming Using CloudFront and Adobe Flash Media Server 4.5
11Live Smooth Streaming Using Amazon CloudFront and IIS Media Services 4.1

Abhishek Tiwari 10.59350/bksfp-rkm49 2013‑01‑31

http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/LiveStreamingAdobeFMS4.5.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/IISLiveSmoothStreaming4.1.html
https://doi.org/10.59350/bksfp-rkm49


CloudFront Design Patterns And Best Practices 14

Figure 9: Live Streaming and CloudFront

How it works? Each solution relies on an encoder and a media service or server as described in
above image (A: Adobe’s Flash Media Server 4.512 and B: IIS Media Services). Encoder takes live video
as input and convert video into right format. Then video is pushed to origin server (media service or
server). Origin server thenbreaks the video intoa series of smaller files (called segmentsor fragments)
that are cached in the CloudFront network. It all happens in real time. Now each fragment can be
encoded on different bit rate and depending on client’s network conditions an appropriate fragments
steamwith optimal bit rate is served from CloudFront.

12Live HTTP Streaming Using CloudFront and Adobe Flash Media Server 4.5

Abhishek Tiwari 10.59350/bksfp-rkm49 2013‑01‑31

http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/LiveStreamingAdobeFMS4.5.html
https://doi.org/10.59350/bksfp-rkm49

	Cloudfront Distribution
	How Cloudfront Works?
	Pattern-1: Domain Sharding
	Pattern-2: Versioning
	Pattern-3: Dynamic Thumbnailing And Encoding
	Pattern-4: Compression
	Pattern-5: Audio/Video Streaming
	Pattern-7: Private Content
	Pattern-8: Live Streaming

