
Decoupling Deployment and
Release‑ Feature Toggles

Abhishek Tiwari
 

 

Citation: A. Tiwari, ”Decoupling Deployment and Release‑ Feature
Toggles”, Abhishek Tiwari, 2013. doi:10.59350/6ayra-sc056

Published on: October 18, 2013

https://orcid.org/0000-0003-2222-2395
https://doi.org/10.59350/6ayra-sc056


Decoupling Deployment and Release‑ Feature Toggles 1

There are key differences between deployment and release. Deployment means putting the latest
stable version of code on your web application servers. Latest version of code often includes a range
of features or improvements. Release means making all or selected features available to the public
or end‑users. In addition, one main difference between deployment and release is the ability to roll
back.

Think in this way, when a retailer moves new range of products from warehouse to a store ‑ that is a
deployment. When these newproducts go on store shelves so that people can buy it in store ‑ that is a
release. Now retailermaydelivery 100 newproducts fromwarehouse to store, but storemanagermay
opt to put only 10 products on the store shelves. That is one way of doing selective release. Another
way to do a selective release will be to offer these 10 products to VIP customers only.

Decoupling

In a new world most of web‑scale companies have decoupled the deployment from release process.
Decoupling the deployment from the release helps to achieve the zero‑downtime release. With Zero‑
downtime release, switching user from one release to another happens instantaneously. It also helps
to instantaneously rollback to previous release when required. This decoupling also enables dev and
ops teams to deploy new versions of application continuously, completely independent of the deci‑
sion as to which features are available to which users.

Phased rollout

Now a days when Apple starts rolling out a new version of iOS, although latest release is deployed on
all delivery servers but not everyone can download latest release. To get the latest iOS release, you
have to be part of a queue. By doing selective release Apple achieves two things ‑ a better capacity
management and identifying and fixing the bugs before it opens door for wider audience.

Similarly when Facebook or Google+ start rolling new features they release it in a phased manner ‑
first releasing to a selective audience and progressively to everyone else. It also enables Facebook
and Google+ to test things on early users and react to responses.

Dark Launching

Term dark launching was coined by Facebook engineering team to simulate the new features in pro‑
duction environment well before release.

Abhishek Tiwari 10.59350/6ayra-sc056 2013‑10‑18

https://www.facebook.com/note.php?note_id=14218138919
https://doi.org/10.59350/6ayra-sc056


Decoupling Deployment and Release‑ Feature Toggles 2

The secret for going from zero to seventymillion users overnight is to avoid doing it all in one fell
swoop. We chose to simulate the impact of many real users hitting many machines by means
of a “dark launch” period in which Facebook pages wouldmake connections to the chat servers,
query for presence information and simulate message sends without a single UI element drawn
on the page. With the “dark launch” bugs fixed, we hope that you enjoy Facebook Chat now that
the UI lights have been turned on.

Using a dark launching approach you can soak test new features and fix any bug detected during dark
launch period. Dark launching can also be used to prepare application for release by

• pre‑caching clients side assets and libraries in user browser
• warming up application side caching
• performing database migration, expansion only

Feature Toggles

Feature toggles are used for dark Launching or phased rollout. Once latest version of application
deployed we can toggle and expose a set of features to selected or all end‑users. Feature toggles can
be also used for,

• for avoiding branching andmerging
• experimenting such as A/B tests
• putting unfinished code in production
• reducing risk associated with large change
• turning a resources heavy feature OFF in high load conditions

According to Ross Harmes@ Flickr

Feature flags and flippersmeanwedon’t have to domerges, and that all code (nomatter how far
it is from being released) is integrated as soon as it is committed. Deploys become smaller and
more frequent; this leads to bugs that are easier to fix, since we can catch them earlier and the
amount of changed code is minimized.

Martin Fowler’s explanation of feature toggle,

The basic idea is to have a configuration file that defines a bunch of toggles for various features
you have pending. The running application then uses these toggles in order to decide whether
or not to show the new feature.

Abhishek Tiwari 10.59350/6ayra-sc056 2013‑10‑18

http://en.wikipedia.org/wiki/Soak_testing
http://code.flickr.net/2009/12/02/flipping-out/
https://doi.org/10.59350/6ayra-sc056


Decoupling Deployment and Release‑ Feature Toggles 3

Normally features toggles can have boolean states ‑ ON or OFF. But depending on your requirements
a feature toggle can bemore than boolean states ‑ lists, arrays, strings, conditions, logical statements,
integers or any other value. State of toggles is either set statically using application configuration
based toggles or dynamically using rules based toggles.

Once a list of toggles are available in application context or namespace, you can use them your appli‑
cation code using simple if conditions.

if (MyFeatures.HOT_NEW_FEATURE.isActive()) {
// do cool new stuff here

}

<h:panelGroup rendered="#{features['HOT_NEW_FEATURE']}">
<!-- Some part of the page required for HOT_NEW_FEATURE -->

</h:panelGroup>

For frameworks like Rails or Django, you can define feature flipping on all levels ‑ Model, View, Tem‑
paltes and Controller.

Application congifuration based Toggles

Using application configuration file (XML, YAML or JSON), you can switch ON or OFF selected fea‑
tures.

Rule based Toggles

Rule based toggles can be applied to selected records using database queries ‑ filter using a select
condition and update toggle state to ON.

select all users where friends.count > 1000 and set TIMELINE_FEATURE = ON

Another way to apply rule based toggles is to use performance parameters like number of users, aver‑
age load time etc.

set MINICART_FEATURE = OFF when live.users > 5,000

set MINICART_FEATURE = OFF when loadTime > 5s

Performancebased toggles canhelpyou todegradeyour serviceunderhigh loadconditionsgracefully.
Similar technique was used when Facebook launched usernames feature.

Abhishek Tiwari 10.59350/6ayra-sc056 2013‑10‑18

https://doi.org/10.59350/6ayra-sc056


Decoupling Deployment and Release‑ Feature Toggles 4

Rule based toggles are normally created using a admin interface. Facebook uses a similar rule based
toggle admin called as Gatekeeper. Gatekeeper works with Facebook’s feature toggles to control who
can see which features at runtime.

Figure 1: Gatekeeper admin interface to define rule based feature toggles

Feature groups

Once your start using feature toggles regularly, it is good idea to group the features. For instance, you
can group all features with positive impact on performance. Moreover, feature groups are very handy
when one feature depends on another.

Process, Design and Life Cycle

Feature toggles require a robust engineering process, solid technical design and a mature toggle
life‑cycle management. Without these 3 key consideration, use of feature toggles can be counter‑
productive. Remember main purpose of toggles is to perform release with minimum risk, once
release is complete toggles need to be removed.

Abhishek Tiwari 10.59350/6ayra-sc056 2013‑10‑18

http://fernandorubbo.blogspot.com.au/2013/03/feature-toggles-good-or-bad.html
https://doi.org/10.59350/6ayra-sc056


Decoupling Deployment and Release‑ Feature Toggles 5

In terms of process, use of feature toggles requires a streamlined and channeled process. First of all
there should be clear guidelines, when to use toggles or not. Then there should be a changemanage‑
ment control around turning toggles ON or OFF.

Basically you need a CRUD life‑cycle for feature toggles, otherwise they will become technical debt.
So,

• Development team create toggles when required
• Application read or expose toggled feature when they are switched ON
• Development team update toggled features when they are buggy
• A semi‑automated process to destroy or remove toggles when job is done

Destroy or remove toggles when a feature,

• is released and no issues are pending or all raised issues are fixed and feature is stable
• was not released due to various issues and fixing issues not possible ormay not be high priority

Support for feature toggles

Feature toggles are supported bymost ofmainstreamprogramming languages andweb‑frameworks.
Most these libraries or packages also offer toggle admin interface to define feature toggles.

Feature toggles in Ruby

• Flip
• Rollout
• Degrade

Feature toggles in PHP

• FeatureToggle (Symfony)

Feature toggles in Python

• Gargoyle (Django)
• Django Waffle (Django)
• Nexus admin

Feature toggles in JavaScript:

• FeatureFlipperJS (Node)

Abhishek Tiwari 10.59350/6ayra-sc056 2013‑10‑18

http://github.com/pda/flip
http://github.com/jamesgolick/rollout
http://github.com/jamesgolick/degrade
http://github.com/marekkalnik/FeatureToggleBundle
http://github.com/disqus/gargoyle
http://github.com/jsocol/django-waffle
https://github.com/disqus/nexus
http://github.com/bigodines/feature-flipper-js
https://doi.org/10.59350/6ayra-sc056


Decoupling Deployment and Release‑ Feature Toggles 6

Feature toggles in .net:

• FeatureToggle

Feature toggles in Groovy

• GrailsFeatureToggle

Feature toggles in Java

• Togglz

Abhishek Tiwari 10.59350/6ayra-sc056 2013‑10‑18

http://github.com/jason-roberts/FeatureToggle
http://github.com/ryannorris/grails-feature-toggle
http://www.togglz.org/
https://doi.org/10.59350/6ayra-sc056

	Decoupling
	Phased rollout
	Dark Launching
	Feature Toggles
	Application congifuration based Toggles
	Rule based Toggles
	Feature groups
	Process, Design and Life Cycle
	Support for feature toggles


