
Deploying Hugo Sites on Cloudflare
Pages with Decap CMS and GitHub
Backend

Abhishek Tiwari

Citation: A. Tiwari, ”Deploying Hugo Sites on Cloudflare Pages with Decap
CMS and GitHub Backend”, Abhishek Tiwari, 2024.
doi:10.59350/dp6cx-sma35

Published on: December 03, 2024

https://orcid.org/0000-0003-2222-2395
https://doi.org/10.59350/dp6cx-sma35

Deploying Hugo Sites on Cloudflare Pages with Decap CMS and GitHub Backend 1

Recently I migrated this website from Ghost to Hugo. This site is now generated by Hugo, stored by
Github, deployedonCloudflarePages, andcontentmanagedviaDecapCMS.Hugo,DecapCMS,Cloud‑
flare Pages, and GitHub together create a powerful and efficient stack for building, managing, and
deploying static websites. This combination is perfect for anyone seeking to develop a scalable and
flexible publishing workflow, as well as content creators looking for an easy‑to‑use content manage‑
ment interface.

New Stack

Hugo is one of the fastest static site generators available, capable of transformingmarkdown files into
fully functional websites in seconds.

GitHub acts as thebackend for thisworkflow, serving as the repository formyHugo site andpowering
Decap CMS’s Git‑based content management.

DecapCMS (formerlyNetlify CMS) is anopen‑source, Git‑based contentmanagement system. With its
intuitive admin interface, DecapCMS enables non‑technical users tomanagewebsite content directly
from a browser.

Cloudflare Pages offers globally distributed platform for deploying static sites. It provides automatic
builds, branch‑based previews, and a robust CDN for blazing‑fast delivery.

Step‑by‑Step Guide

In this guide, you’ll learn how to set up and deploy a Hugo site on Cloudflare Pages with Decap CMS
andGitHub as the backend. This setup is inspired by Decap CMS for Cloudflare Pages but coversmore
advanced topics like branch‑specific base URLs, Github authentication for Decap CMS, pull request
preview URL integration, Cloudflare Access protection for preview URLS to streamline collaboration
and deployment. Let’s dive in!

Configure Cloudflare Pages for Hugo

Start by connecting your Hugo project’s GitHub repository to Cloudflare Pages. Once connected, con‑
figure the build settings in the Cloudflare Pages admin UI.

Abhishek Tiwari 10.59350/dp6cx-sma35 2024‑12‑03

https://github.com/SubhenduX/decap-cms-cloudflare-pages
https://doi.org/10.59350/dp6cx-sma35

Deploying Hugo Sites on Cloudflare Pages with Decap CMS and GitHub Backend 2

Figure 1: Go to your Cloudflare Pages Project and register build command

To handle different base URLs for production and preview builds, create a cf-build.sh file
at the root of your Hugo project and add following code. Note we are using unshallow and
enableGitInfo so we can use Git to determine the update dates. My Hugo theme setup relies on
certain npmmodules but this may not be relevant for you, so feel free to adjust the build file.

#!/bin/bash
if ["$CF_PAGES_BRANCH" == "main"]; then
git fetch --unshallow && npm install && hugo -b $BASE_URL --gc --minify

--templateMetrics --templateMetricsHints --forceSyncStatic --
enableGitInfo

else
git fetch --unshallow && npm install && hugo -b $CF_PAGES_URL --gc --

minify --templateMetrics --templateMetricsHints --forceSyncStatic --
enableGitInfo

fi

Register this cf-build.sh file as the build command in the Cloudflare Pages admin UI or in your
wrangler.toml file if you’re using Wrangler for deployment.

[build]
command = "bash cf-build.sh"

Additionally, set upBASE_URLenvironment variables in theCloudflarePagesadminUI.BASE_URLis
your production domain (e.g., https://www.yourdomain.com). For preview build, script usage
CF_PAGES_URL automatically set by Cloudflare Pages for branch‑specific preview URLs.

Abhishek Tiwari 10.59350/dp6cx-sma35 2024‑12‑03

https://doi.org/10.59350/dp6cx-sma35

Deploying Hugo Sites on Cloudflare Pages with Decap CMS and GitHub Backend 3

Set Up Decap CMS for Cloudflare Pages

To set up Decap CMS with GitHub OAuth authentication, follow these steps:

Create a GitHub OAuth Application

Go to your GitHub account’s developer settings and create a new OAuth application, and note the
Client ID and Client Secret. To create application provide the Authorization call back URL Authoriza‑
tion callback URL https://www.yourdomain.com/api/callback

Add GitHub Credentials to Cloudflare Pages

Add GITHUB_CLIENT_ID and GITHUB_CLIENT_SECRET as secrets in the Cloudflare Pages
project setting. These should match the Client ID and Client Secret from your GitHub OAuth
application.

Add Functions for Authentication

Download the Decap CMS for Cloudflare Pages repository and copy the functions directory from
the repository to the root of your Hugo project. These functions handle GitHub OAuth authentication
for Decap CMS.

Set Up Decap CMS Admin Interface

In your Hugo project’s static directory, create an admin folder add following content to index
.html file. This file does a few things. It loads decap-cms.js and other modules then registers
PostPreview and PreviewStyle. In my case, I use Katex math in my articles so I am loading
remark-math, rehype-mathjax to preview those. Depending on your use case youmay or may
not require all of these modules.

<!DOCTYPE html>
<html>
<head>

<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0"

/>
<title>Content Manager</title>

</head>
<body>

<!-- Include the script that builds the page and powers Netlify CMS --
>

Abhishek Tiwari 10.59350/dp6cx-sma35 2024‑12‑03

https://github.com/settings/developers
https://github.com/SubhenduX/decap-cms-cloudflare-pages
https://doi.org/10.59350/dp6cx-sma35

Deploying Hugo Sites on Cloudflare Pages with Decap CMS and GitHub Backend 4

<script src="https://unpkg.com/decap-cms@3.4.0/dist/decap-cms.js"></
script>

<script type="module">
import Markdown from 'https://esm.sh/react-markdown@9?bundle'
import remarkMath from 'https://esm.sh/remark-math@6.0.0?bundle'
import rehypeMathjax from 'https://esm.sh/rehype-mathjax@5.0.0?

bundle'

import remarkGfm from 'https://esm.sh/remark-gfm@4.0.0?bundle'
import rehypeRaw from 'https://esm.sh/rehype-raw@7.0.0?bundle'

var PostPreview = createClass({
render: function() {
if (this.props.widgetFor('body') != null) {

return Markdown({
children: this.props.widgetFor('body').props.value,
rehypePlugins: [rehypeMathjax, rehypeRaw],
remarkPlugins: [remarkMath, remarkGfm]

});
} else {

return '';
}

}
});
CMS.registerPreviewTemplate("articles", PostPreview);
CMS.registerPreviewStyle("/admin/preview.css");

</script>
</body>

</html>

In admin folder add preview.css file ‑ registered for preview style in above snippet ‑ to add your
preview styling. Here is my version,

/* Import Google Fonts */
@import url('https://fonts.googleapis.com/css2?family=PT+Sans:wght@400

;700&family=Poppins:wght@400;700&display=swap');

/* General Body Styling */
body {

font-family: 'Poppins', sans-serif;
line-height: 1.6;
margin: 0;
padding: 0;
background-color: #f9f9f9;
color: #333;

}

/* Headline Styling */
h1, h2, h3, h4, h5, h6 {

font-family: 'PT Sans', sans-serif;
font-weight: 700;

Abhishek Tiwari 10.59350/dp6cx-sma35 2024‑12‑03

https://doi.org/10.59350/dp6cx-sma35

Deploying Hugo Sites on Cloudflare Pages with Decap CMS and GitHub Backend 5

color: #222;
margin-top: 1.5rem;
margin-bottom: 0.75rem;

}
/* Redacted for simplicity */

Configure Decap CMS Backend and Collections

Add a config.yml file in the admin directory to configure Decap CMS. Here’s an example config
.yml for a blog which uses Github as backend, enables editorial workflow, preview links, editor pre‑
views.

site_url: https://www.yourdomain.com
display_url: https://www.yourdomain.com
publish_mode: editorial_workflow
show_preview_links: true
backend:
name: github
repo: user/repository
branch: main
base_url: https://www.yourdomain.com
auth_endpoint: /api/auth
squash_merges: true
preview_context: 'cloudflare preview deploy'

media_folder: "static/uploads"
public_folder: "/uploads"
collections:
- name: articles

label: Articles
folder: "content/articles"
create: true
slug: "{{slug}}"
preview_path: '{{slug}}'
editor:

preview: true
fields:

- { name: "title", label: "Title", widget: "string" }
- { name: "body", label: "Body", widget: "markdown" }

Set‑up Pull Request Status Updates

To integrate Cloudflare Pages preview URLs with GitHub pull requests, we will use a custom GitHub
Action. ThisGitHubActionconvertsCloudflarepull request check to statuswhich is required forDecap
CMS preview link. Create a Github workflow file named cloudflare-preview-status.yml in
.github/workflows of your Hugo project and add following:

Abhishek Tiwari 10.59350/dp6cx-sma35 2024‑12‑03

https://doi.org/10.59350/dp6cx-sma35

Deploying Hugo Sites on Cloudflare Pages with Decap CMS and GitHub Backend 6

name: Convert Cloudflare Check Run to Status
on:
check_run:

types: [completed]

jobs:
create_status_for_check:

name: Create Status for Check Run
runs-on: ubuntu-latest
permissions:

checks: read
statuses: write

steps:
- uses: actions/github-script@v7

with:
script: |

const getPreviewUrlForCheck = (check) => {
console.log(check)
const regex = /Preview URL:<\/strong><\/td><td>\n/s;
const match = check?.output?.summary?.match(regex);
console.log(match)
return match?.[1];

};

const getCloudflareCheckForRef = async (owner, repo, ref) => {
const {
data: { check_runs: checks },

} = await github.rest.checks.listForRef({ owner, repo, ref
});

return checks.find((check) => check.app.slug === "cloudflare
-workers-and-pages");

};

const createDeployStatus = async (owner, repo, sha, target_url
) => {

await github.rest.repos.createCommitStatus({
owner,
repo,
sha,
target_url,
state: "success",
context: "cloudflare preview deploy",
description: "Cloudflare preview deploy successful",

});
};

const main = async () => {
const [owner, repo] = "${{ github.repository }}".split("/");

Abhishek Tiwari 10.59350/dp6cx-sma35 2024‑12‑03

https://doi.org/10.59350/dp6cx-sma35

Deploying Hugo Sites on Cloudflare Pages with Decap CMS and GitHub Backend 7

const ref = "${{ github.event.check_run.check_suite.head_sha
}}";

const check = await getCloudflareCheckForRef(owner, repo,
ref);

const previewUrl = getPreviewUrlForCheck(check);

if (!previewUrl) {
console.log("No preview URL found in check run output")
return;

}
await createDeployStatus(owner, repo, ref, previewUrl);
console.log("Created status for Cloudflare preview deploy");

};

await main();

If above actionworks, then pull request created by Decap CMS in your Hugo project Github repository
will display Cloudflare Pages check suggesting changes are deployed successfully and a new status
titled cloudflare preview deploywill be displayed.

Figure 2: Check and statu For Cloudflare Pages Deployment on Github

Verify the Overall Setup

Push your Hugo project changes to GitHub to trigger a Cloudflare Pages build and verify the overall
setup by confirming,

1. Cloudflare Pages is building both preview (for draft entries using editorial workflow) and pro‑
duction (for published entries) sites with the correct base URLs.

2. Decap CMS is accessible at https://www.yourdomain.com/admin and works with
GitHub OAuth authentication.

Abhishek Tiwari 10.59350/dp6cx-sma35 2024‑12‑03

https://doi.org/10.59350/dp6cx-sma35

Deploying Hugo Sites on Cloudflare Pages with Decap CMS and GitHub Backend 8

3. Pull request for draft change created by Decap CMS on GitHub is displaying a link to the Cloud‑
flare Pages preview in the status section. Once you published a draft change, pull requests is
merged by Decap CMS to main branch to build Production site.

4. Finally you will see a preview link when editing the collections registered in your Decap config‑
uration. Decap CMS Preview link will show with a lag of upto 5 minutes.

Figure 3: Example Decap CMS Preview Link

Protect Previews and Decap CMS by Cloudflare Access

Whendeploying a site onCloudflare Pages, it’s essential to protect sensitive previewURLs frompublic
access and Google crawlers. By enabling Cloudflare Access, you can secure these preview URLs and
ensure thatonlyauthorizedusers canaccess them. Inaddition, youcanalsoaddadditionalprotection
for Decap CMS Admin by putting it behind the Cloudflare Access.

To enable Cloudflare Access, go to your Cloudflare Pages project then settings and enable the Access
policy. By default it will only protect your preview deployment URLs (for example, 373f31e2.your
-project.pages.devwhere 373f31e2 is commit hash). To protect /adminURL or custom do‑
main specific to a branch like staging.yourdomain.com, update the policy to add your custom
domain.

Figure 4: Adding /admin path for additional protection

Last but not least you should redirect your Cloudflare Pages project domain i.e. your-project.

Abhishek Tiwari 10.59350/dp6cx-sma35 2024‑12‑03

https://developers.cloudflare.com/pages/configuration/preview-deployments/#customize-preview-deployments-access
https://doi.org/10.59350/dp6cx-sma35

Deploying Hugo Sites on Cloudflare Pages with Decap CMS and GitHub Backend 9

pages.dev to your custom domain to prevent crawlers from indexing and impacting your SEO. Use
Cloudflare Bulk Redirects to redirect your-project.pages.dev to your custom domain www.
yourdomain.com. Do not addyour-project.pages.devbehindCloudflare Access otherwise
your custom domain will be not accessible publicly.

Closing remarks

Letme know how you gowith these instructions and if there are any feedbacks or improvements you
would like to add.

Abhishek Tiwari 10.59350/dp6cx-sma35 2024‑12‑03

https://doi.org/10.59350/dp6cx-sma35

	New Stack
	Step-by-Step Guide
	Configure Cloudflare Pages for Hugo
	Set Up Decap CMS for Cloudflare Pages
	Set Up Decap CMS Admin Interface
	Configure Decap CMS Backend and Collections
	Set-up Pull Request Status Updates
	Verify the Overall Setup

	Protect Previews and Decap CMS by Cloudflare Access
	Closing remarks

