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Differential Privacy is a powerful framework for ensuring privacy in data analysis by adding controlled
noise to computations. Its mathematical foundation guarantees that the presence or absence of any
individual’s data in a dataset does not significantly affect the outcome of an analysis. Here are six key
equations that capture the essence of differential privacy and its mechanisms, along with references
to their origins and explanations.

Definition of Differential Privacy

[1] formalises privacy through the concept of indistinguishability between neighbouring datasets. A
mechanism ℳ satisfies 𝜖‑differential privacy if:

Pr[ℳ(𝐷) ∈ 𝑆] ≤ 𝑒𝜖 ⋅ Pr[ℳ(𝐷′) ∈ 𝑆]

Where,

• 𝑃𝑟 denotes the probability of an event.
• 𝐷, 𝐷′: Neighboring datasets differing in one entry.
• ℳ: The randomizedmechanism applied to the dataset.
• 𝑆: Subset of possible outputs.
• 𝜖: Privacy budget controlling the privacy‑accuracy tradeoff.

This definition ensures that the outputs of ℳ are statistically indistinguishable for any two neighbor‑
ing datasets.

Laplace Mechanism

The [1] is a common approach for achieving 𝜖‑differential privacy. It adds noise drawn from a Laplace
distribution to the output of a function. The amount of noise is determined by the function’s sensitiv‑
ity and the privacy budget 𝜖, balancing privacy and accuracy. The noise is defined as:

𝜂 ∼ Lap(Δ𝑓
𝜖 )

Here:

• Δ𝑓 = max𝐷,𝐷′ ||𝑓(𝐷) − 𝑓(𝐷′)||1: Sensitivity of the function 𝑓 , measuring the maximum dif‑
ference in output for neighboring datasets.

• 𝜖 is privacy budget.
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The perturbed result is:

ℳ(𝐷) = 𝑓(𝐷) + 𝜂

Gaussian Mechanism

For scenarios where a small probability of failure is acceptable, (𝜖, 𝛿)‑differential privacy can be
achieved using the [2]. The noise is sampled from a normal distribution:

𝜂 ∼ 𝒩(0, 𝜎2)

The standard deviation of the noise is calculated as:

𝜎 = Δ𝑓 ⋅ √2 ln(1.25/𝛿)
𝜖

Where:

• Δ𝑓 : Sensitivity of the function 𝑓 .
• 𝛿: Probability of a privacy failure.
• 𝜖 is privacy budget.

The perturbed output is:

ℳ(𝐷) = 𝑓(𝐷) + 𝜂

When applied iteratively or in compositions, the GaussianMechanism aligns well with advanced com‑
position theorems (described below), making it practical for repeated queries. It is particularly useful
when the function’s output has high sensitivity or when (𝜖, 𝛿)‑differential privacy is needed instead of
strict 𝜖‑differential privacy.

Composition Theorems

When multiple differentially private mechanisms are applied, the privacy budget accumulates. Dif‑
ferential privacy provides a framework for measuring and bounding the [3] frommultiple analyses of
information about the same individuals. Two key composition approaches are:
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Sequential Composition

If 𝑘 mechanisms ℳ1, ℳ2, … , ℳ𝑘 are applied, each with privacy guarantees 𝜖1, 𝜖2, … , 𝜖𝑘, the total
privacy guarantee is:

𝜖total =
𝑘

∑
𝑖=1

𝜖𝑖

Suppose a dataset is queried three times using mechanisms with 𝜖1 = 0.5, 𝜖2 = 0.3, and 𝜖3 = 0.2.
The total privacy budget consumed is:

𝜖total = 0.5 + 0.3 + 0.2 = 1.0

This means the combined analysis satisfies 1.0‑differential privacy.

Advanced Composition

A tighter bound is given by advanced composition, which accounts for small failures:

𝜖total = √2𝑘 ln(1/𝛿) ⋅ 𝜖 + 𝑘 ⋅ 𝜖2

Suppose a dataset is queried 100 times, each query satisfying (𝜖 = 0.1, 𝛿 = 10−5)‑differential privacy.
Using advanced composition:

𝜖total = √2 ⋅ 100 ⋅ ln(1/10−5) ⋅ 0.1 + 100 ⋅ (0.1)2

1. Calculate the first term:

√2 ⋅ 100 ⋅ ln(105) ⋅ 0.1 =
√

2 ⋅ 100 ⋅ 11.5129 ⋅ 0.1 =
√

2302.58 ⋅ 0.1 = 4.8

2. Calculate the second term:

100 ⋅ 0.01 = 1

3. Combine the terms:
𝜖total = 4.8 + 1 = 5.8

Thus, after 100 queries, the total privacy guarantee is approximately (𝜖 = 5.8, 𝛿 = 10−5).
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Comparing Sequential and Advanced Composition

Aspect Sequential Composition Advanced Composition

Privacy
Parameter (𝜖)

Sum of all individual 𝜖 values. Tighter bound with
sublinear growth.

Failure
Probability (𝛿)

Assumes 𝛿 = 0. Allows for small 𝛿 > 0.

Scaling with 𝑘 Linear scaling: 𝜖total = 𝑘 ⋅ 𝜖. Sublinear scaling with
√

𝑘.
Accuracy Less noise is required for individual

mechanisms but results in higher cumulative
noise.

Supports smaller
cumulative noise.

Use Cases Suitable for strict privacy guarantees. Suitable for practical
settings with relaxed
privacy.

Sensitivity

The [1] of a function quantifies its robustness to changes in individual data points. Sensitivity deter‑
mines the amount of noise required to ensure privacy. Currently, the global and local sensitivity are
being mainly used in differential privacy.

Global Sensitivity

[1] is the maximum change in the output of a function Δ𝑓𝐺 when applied to any two neighboring
datasets 𝐷 and 𝐷′, differing by a single element. For function Δ𝑓𝐺, the ℓ1 or global sensitivity is
defined as:

Δ𝑓𝐺 = max
𝐷,𝐷′

||𝑓(𝐷) − 𝑓(𝐷′)||1

Where:

• 𝐷, 𝐷′: Neighboring datasets differing in one record.
• || ⋅ ||1: The ℓ1‑norm, representing the absolute difference in outputs.
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Global sensitivity is the maximum differences in output with consideration of all possible
datasets and is therefore only dependent on the query and not the dataset.

Local Sensitivity

[4] is a finermeasure defined for a specific dataset𝐷. It measures themaximum change in the output
of function Δ𝑓𝐿 for all neighboring datasets 𝐷′ of 𝐷:

Δ𝑓𝐿(𝐷) = max
𝐷′

||𝑓(𝐷) − 𝑓(𝐷′)||1

Local sensitivity attempts to calculate the sensitivity for a local data set, where the possible
changes are bound by the local data set and not the universe of all data sets.

While local sensitivity may be smaller than global sensitivity for specific datasets, it is less robust for
privacy guarantees since it depends on the specific dataset and not the worst‑case scenario.

Sensitivity for Common Functions

1. Counting Queries: For functions that count individuals satisfying a condition, Δ𝑓 = 1.

2. SummationQueries: If data values are bounded (e.g., incomewithin [0, 100]), the sensitivity is
the range of possible values. For summing incomes:

Δ𝑓 = max value − min value = 100 − 0 = 100

3. Average Queries: Sensitivity for averages depends on both the range of values and the dataset
size 𝑛:

Δ𝑓 = max value − min value
𝑛

4. Maximum or MinimumQueries: Sensitivity is the largest possible change in the maximum or
minimumwhen a single data point is added or removed.

Comparing Global Sensitivity vs. Local Sensitivity
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Aspect Global Sensitivity Local Sensitivity

Definition Measures the maximum change in the
output of a function 𝑓 over all possible
neighboring datasets.

Measures the maximum change in the
output of 𝑓 for a specific dataset and
its neighbors.

Scope Evaluates worst‑case sensitivity across
all possible datasets.

Evaluates sensitivity for a particular
dataset 𝐷.

Robustness Independent of the specific dataset;
provides universal guarantees.

Dependent on the specific dataset; may
not generalize to other datasets.

Noise
Require‑
ment

Requiresmore noise to account for the
worst‑case scenario.

May allow less noise for datasets with
lower local sensitivity.

Use Case Commonly used for general differential
privacy guarantees.

Suitable for improving accuracy when
local sensitivity is significantly smaller.

Accuracy May result in less accurate outputs due
to higher noise.

Can yield more accurate results for
specific datasets with low local
sensitivity.

Computation
Complex‑
ity

Straightforward to compute for many
functions but can be conservative.

Requires evaluating sensitivity for
every neighboring dataset, which can
be complex.

Examples For a count query: Δ𝑓 = 1, as
adding/removing one individual changes
the count by 1.

For a count query: Sensitivity may be
less than 1 if the specific dataset
structure limits changes.

Exponential Mechanism

The [5] is useful for selecting outputs in a way that prioritizes utility while maintaining privacy. It
assigns probabilities to each potential output 𝑟 based on a utility function 𝑢(𝐷, 𝑟):

Pr[ℳ(𝐷) = 𝑟] ∝ exp (𝜖 ⋅ 𝑢(𝐷, 𝑟)
2Δ𝑢 )

Where:

• 𝑢(𝐷, 𝑟): Utility function representing the quality of 𝑟.
• Δ𝑢: Sensitivity of the utility function.
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• 𝜖 is the privacy budget.

Unlike mechanisms that add noise to the output (e.g., Laplace Mechanism), the Exponential Mecha‑
nism modifies the selection probability, making it suitable when adding noise would render the out‑
put meaningless or when the output space is non‑numeric. It extends the concept of differential pri‑
vacy to non‑numeric data types and provides a foundation for private data analysis in more complex
settings.

Laplace Mechanism vs. Gaussian Mechanism vs. Exponential Mechanism

Aspect Laplace Mechanism Gaussian Mechanism Exponential Mechanism

Purpose Adds noise to the output
of a numeric query to
achieve 𝜖‑differential
privacy.

Adds noise to the output of
a numeric query to achieve
(𝜖, 𝛿)‑differential privacy.

Selects an output from a
discrete set based on a
utility function, ensuring
𝜖‑differential privacy.

Type of
Output

Numeric values (e.g.,
sums, counts, averages).

Numeric values (e.g., sums,
counts, averages).

Categorical or discrete
outputs (e.g., choosing the
best item or category).

Noise
Distri‑
bution

Noise is drawn from a
Laplace distribution:
Lap(Δ𝑓

𝜖 ).

Noise is drawn from a
Gaussian (normal)
distribution: 𝒩(0, 𝜎2).

Selection probabilities are
proportional to
exp ( 𝜖⋅𝑢(𝐷,𝑟)

2Δ𝑢 ).
Parameters𝜖 (privacy budget). 𝜖 (privacy budget), 𝛿 (failure

probability).
𝜖 (privacy budget), Δ𝑢
(sensitivity of the utility
function).

Sensitivity
Re‑
quire‑
ment

Requires global sensitivity
Δ𝑓 of the function.

Requires global sensitivity
Δ𝑓 of the function.

Requires sensitivity Δ𝑢 of
the utility function.

Privacy
Guaran‑
tee

Strict 𝜖‑differential
privacy.

Approximate
(𝜖, 𝛿)‑differential privacy.

Strict 𝜖‑differential privacy.

Noise
Scaling

Noise scales linearly with
Δ𝑓
𝜖 .

Noise scales with
Δ𝑓⋅√2 ln(1.25/𝛿)

𝜖 .
No direct noise; selection
probabilities are adjusted
based on utility and 𝜖.
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Aspect Laplace Mechanism Gaussian Mechanism Exponential Mechanism

Failure
Proba‑
bility (𝛿)

No failure probability;
guarantees hold strictly
for all cases.

Allows a small failure
probability (𝛿 > 0) for more
flexibility in noise
calibration.

No failure probability;
guarantees hold strictly for
all cases.

Key
Strength

Simple to implement and
provides strict privacy
guarantees.

Handles high‑dimensional
queries and provides a
trade‑off with a small
failure probability (𝛿).

Ensures privacy while
prioritizing outputs with
higher utility, suitable for
categorical data.

Key
Limita‑
tion

May add excessive noise
for high‑dimensional
queries.

Requires additional
parameter (𝛿) andmore
noise for strict privacy.

Limited to discrete or
categorical output spaces;
requires well‑defined utility
functions.

ApplicationsNumeric data analysis,
such as counting,
summation, andmean
estimation.

Machine learning,
high‑dimensional statistics,
and approximate
differential privacy
settings.

Parameter selection, private
feature selection, or any
situation with categorical
output.

Accuracy
vs. Pri‑
vacy
Tradeoff

Balances accuracy and
privacy by adjusting 𝜖;
may degrade accuracy
with large sensitivity.

Allows finer trade‑offs by
adjusting both 𝜖 and 𝛿;
suitable for approximate
guarantees.

Balances utility and privacy;
prioritizes high‑utility
outputs while maintaining
privacy.

Conclusion

Differential privacy provides a rigorous [6] for protecting individual data in computations. These six
equations form the core of differential privacy and its mechanisms. By carefully choosing the noise
and parameters, analysts can ensure a balance between privacy and accuracy. Understanding these
equations empowers practitioners to implement robust privacy‑preserving techniques in real‑world
applications.
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