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Distributed traces are essential for understanding the behaviour, performance, and reliability of mi‑
croservices architecture. They can be used to surface meaningful observations about service depen‑
dencies, call graphs, and runtime dynamics, enabling software engineers and scientists to develop
new tools for optimisation and fault diagnosis. However, there is a clear gap in terms of publicly avail‑
able real‑world distributed tracing datasets of microservices architecture to validate theoretical re‑
search with actual observations.

In recent years several comprehensive distributed tracing datasets containing detailed runtime met‑
rics of microservices architecture have been published. These datasets fall into two categories: (1)
traces fromreal‑world large‑scalemicroservices ecosystems, suchas thoseatMeta, Alibaba, andUber,
and (2) traces generated using testbeds. While real‑world datasets are rich in scale, coverage, and fi‑
delity, testbed‑generated datasets often lack these characteristics. This article curates publicly avail‑
able distributed trace datasets useful for research related to microservices architecture .

Traces from Real‑World Microservices Ecosystems

Meta’s Distributed Canopy Traces

Meta’s distributed tracing dataset provides an in‑depth view of the company’s large‑scale microser‑
vices architecture underpinning social media services like Facebook and Instagram. The dataset in‑
cludes 6.5 million traces representing 0.5% of traces collected from a single day (2022/12/21). These
traces capture Meta’s heterogeneous and highly dynamic topology, marked by frequent changes and
high concurrency in service interactions. For more insight into Meta’s microservices architecture see
[1], [2], and [3].

Canopy

At thecoreofMeta’s tracing infrastructure isCanopy, their distributed tracing framework thatoperates
similarly to other event‑based tracing systems but with some unique characteristics. Canopy allows
software developers at Meta to define request workflows and capture critical information through
tracepoints, which are similar to logmessages embedded in the service code. At runtime, tracepoints
are annotated with request context and timestamps. The framework then aggregates records with
identical trace IDs and orders them based on happens‑before relationships to create comprehensive
traces.
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Figure 1: Canopy Traces. Image credits Huye et. al

One of Canopy’s key features is its sampling approach. Rather than implementing uniform sampling
across all services, Canopy supports per‑service sampling profiles with customisable policies. These
profiles can be attached to any service and specify sampling rules based on request attributes. This
flexible sampling strategy means that traces may start at services deep within the topology or end
prematurely at certain services based on their sampling profiles.

Data

The released dataset contains three main components: Service History logs documenting service de‑
ployments and deprecations over 22 months, Service Endpoints data listing exposed endpoints for
each service over 30 days, and Distributed Traces collected by Canopy over 30 days. The traces com‑
ponent alone comprises 13.1 petabytes of data, with only a subset containing 6.5million tracesmade
available.

Potential use cases

Researchers can study trace properties like depth, width, and concurrency patterns to understand
how requests propagate through call chain. The data reveals that most traces are relatively shallow
but wide, suggesting extensive use of parallel processing and data sharding.

Another promising research direction is studying the predictability of request call graph. The traces
show that while some properties like the set of services called by a parent service are somewhat pre‑
dictable, other aspects like concurrency patterns and total number of calls are more variable. This
understanding could help to develop more effective monitoring, debugging, and capacity planning
tools.
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The dataset also highlights important challenges in microservice observability. Many trace branches
terminate prematurely due to rate limiting and/or non‑instrumented services, with deeper call paths
being overly affected with these issues. This insight is valuable for researchers working on improving
observability solutions and developing techniques to work with incomplete tracing data.

For those studying testing and deployment ofmicroservices, the data reveals that Meta’s architecture
includes various types of services beyond the typical microservices model. Some services are more
monolithic in nature, exposing thousands of endpoints, while others are “ill‑fitting” entities that re‑
quire customhandling for scheduling and scaling. This heterogeneity presents interesting challenges
for developing representative test environments and deployment models.

The scale and fidelity of this dataset make it valuable for the microservices research community. It
provides ground truth data about how microservices architecture operate at scale, which can help
validate existing research and open new directions. Researchers can use this data to develop more
realistic microservices benchmarks, improve observability tools, and develop new best practices for
managing large‑scale distributed systems.

Limitations

Due to sampling traces may not cover all interactions, and the specific sampling policies used could
affect analysis outcomes. Additionally, the data represents just one organisation’s approach to mi‑
croservices, albeit at an impressive scale. Future research would benefit from similar datasets from
other organisations to understand different architectural patterns and trade‑offs.

Alibaba’s Cluster Trace Data

The Alibaba microservices trace dataset contain detailed runtime metrics from nearly twenty thou‑
sand microservices collected from Alibaba production clusters running on over ten thousand bare‑
metal nodes during a twelve‑hour period. Two different data sets were published ‑ one in 2021 an‑
other in 2022. Although original study covered 10B traces among nearly 20k microservices in 7 days
from Alibaba clusters, both published trace data are sampled at 0.5% rate and includes 20M+ traces.
For more insight into Alibaba’s microservices architecture see [4], [5], and [3].

Application Real‑TimeMonitoring Service

Alibaba uses the Application Real‑Time Monitoring Service (ARMS) system for trace collection, which
is functionally similar to Google’s Dapper distributed tracing framework. The system collects com‑
prehensive metrics at multiple levels ‑ from hardware‑level indicators like cache misses to operating
system metrics like CPU and memory utilisation, as well as application‑level data including Java vir‑
tual machine heap utilisation and garbage collection statistics.
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Data

The trace data is structured into four main components. The first component captures bare‑metal
node runtime information, recording CPU and memory utilisation across over 1,300 nodes. The sec‑
ond component contains runtime information for over 90,000 containers running across these nodes,
tracking resource utilisation at the container level. The third component provides detailed informa‑
tion aboutmicroservices call rates and response times. Final component contains sampled call graph
data showing the relationships and dependencies betweenmicroservices.

The traces capture three distinct types of communication paradigms between microservices: inter‑
process communication, remote invocation, and indirect communication. Each call record includes
detailed metadata such as timestamp, trace ID, RPC ID, and response time metrics. The dataset also
distinguishes between stateless services and stateful services like databases and caches.

Alibaba dataset schemas and formats are well‑documented and the traces are stored in standard for‑
mats, making it easier for researchers to process and analyse the data.

Shuffled version

In 2024, Huyeet. al released shuffled copies of theoriginal 2021and2022Alibaba’s tracedatasets. The
tables have been shuffled such that all rows for a traceid are contained within the same file. Shuffled
trace files can be found on Harvard Dataverse: 2021, 2022.

Potential use cases

For researchers, this dataset enables several important areas of study. Performance analysis
researchers can investigate how resource utilisation, communication patterns, and deployment
configurations drives latency and overall performance of microservices. The detailed call graph
data allows researchers to study microservices call patterns and their influence on system design
and optimisation. Resource management researchers can use the traces to develop and evaluate
scheduling algorithms andmethods of resource allocation for microservice deployments.

The dataset is particularly valuable for studying how microservices behave under real production
workloads. The traces capture both the regular periodic patterns in microservice behavior as well as
variations and exceptions that occur in production environments. This allows researchers to create
more realistic models and benchmarks compared to synthetic workload generators. The inclusion of
multiple metric types and granular timing information allows for correlation of events and behaviors
at different scales (e.g. nodes vs. containers vs. service).

For academic settings, these traces provide an invaluable resource for teaching distributed systems
conceptsandgiving researchersexposure to real‑worldmicroservicesdeploymentpatterns. Thescale
and complexity of the traced systemhelps bridge the gapbetween simplified academic examples and
production reality.
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Limitations

While the dataset is comprehensive, researchers should note some limitations. The traces are sam‑
pled rather than complete, with call graphs sampled at a 0.5% rate tomanage data volume. Addition‑
ally, some fields have been anonymised or removed for privacy and security reasons. However, the
sampling is consistent and thekey relationshipsandpatternsarepreserved,maintaining thedataset’s
utility for most research purposes.

Uber’s CRISP Dataset

Uber’s CRISP dataset supports critical path analysis within its microservices architecture (see [6]). It
covers approximately 40,000 endpoints, recording millions of remote procedure call (RPC) interac‑
tions per day.

Jaeger

Uber uses Jaeger as distributed tracing frameworks. Jaeger agents run on every host, collecting trace
spans over UDP from applications running on that host. These agents forward the spans to Jaeger
collectors, which then buffer the data into Apache Kafka. The traces are then processed by multiple
consumers: a Jaeger ingester that stores complete traces in Docstore (a distributed SQL database),
a Jaeger indexer that enables searching through spans via Sawmill (a schema‑agnostic logging plat‑
form), and Apache Flink jobs that generate multi‑hop dependency graphs.

Dataset

The dataset mentioned in original CRISP paper includes more than 1 million traces, 4k services, and
40k endpoints but released data only contains a subset of 100k traces.

The traces have been sanitised to protect privacywhile retaining their analytical value. Service names
and endpoint information have been consistently mapped to anonymous identifiers, and absolute
timestamps have been randomly shifted while keeping relative timing relationships within traces.

Thedataset’s documentation includes tools and scripts for analysis, particularly theCRISP framework
for critical path analysis. This enables researchers to process the traces efficiently and drawmeaning‑
ful observations about system behavior, performance bottlenecks, and architectural patterns.

Potential use cases

For researchers, this dataset presents somekeyopportunities. First, it enables the studyof large‑scale
distributed systems behavior and performance characteristics. The traces contain detailed timing
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information, showing how requests flow throughmultiple services and identifying critical paths. This
can feed into optimisation research related to distributed systems and architectural patterns. More
importantly Jaeger is widely used tracing frameworkmaking any research and tools developed using
this dataset extensible.

Second, the dataset is particularly valuable for research into anomaly detection and system health
monitoring. The traces include both normal operation patterns and examples of system issues, useful
for developing and evaluating automated algorithms. The data’s scale and complexity also makes it
an excellent test bed for machine learning approaches to systemmonitoring.

Third, researchers can use these traces to study microservice architecture patterns and factors influ‑
encing their performance. Withdata from thousandsof services interacting inproduction, thedataset
can be used as good real‑word reference on how different architectural decisions affect latency, reli‑
ability, system properties and behaviors at scale.

Limitation

One limitation researchers should note is that the published traces represent a subset of Uber’s total
trace data. While still substantial, with some traces containing up to 275,000 spans and showing con‑
current operations across hundreds of services, theymay not cover all call paths or rare failuremodes
present in the full production system.

Uber’s Error Study Dataset

In addition to CRISP, Uber has released a dataset focusing on RPC error analysis (see [7]). This dataset
includes over 11 billionRPCs and 1,900 user‑facing endpoints, documenting non‑fatal errors and their
impacts on latency. Dataset contains comprehensivemicroservices traces (more than 1.5million) col‑
lected from Uber microservices architecture.

Jaeger

The trace data was collected using Jaeger. Jaeger’s instrumentation captures crucial metadata for
each RPC call, including duration, timestamp, and various tags and logs. This information is com‑
bined into “spans” that represent individual RPCs performed on behalf of user requests. The system
employs trace context metadata with unique trace IDs that are transmitted in‑band across process
boundaries, enabling the correlation of related spans into complete traces.

Dataset
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Uber’s implementation of distributed tracing operates at an impressive scale, processing approxi‑
mately 840 million traces formed from 210 billion spans daily, averaging around 3 million spans per
second. Tomanage this volumewhilemaintaining systemperformance, Uber employs adaptive sam‑
pling rates below 1% for user‑exposed endpoints. Despite this sampling, the collected data provides
a statistically significant representation of system behavior.

The released dataset has been carefully sanitised to protect proprietary information while preserv‑
ing critical performance characteristics necessary for academic research. It includes two main trace
files containing over 1.5 million traces, along with a driver‑sanitised file focusing on app‑launch use
cases. To ensure privacy, the data has undergone several modifications: unrelated fields and tags
have been removed while retaining error‑related information, service mappings have been consis‑
tently anonymised across traces, and trace timestamps have been randomly shifted to prevent tem‑
poral analysis.

Potential use cases

This dataset is particularly useful for studying error patterns and their impact on systemperformance.
The traces retain error‑related tags, allowing researchers to analyse how errors propagate through
microservices call graph and affect overall system reliability. The data can also be used to investigate
latency reduction techniques, as it provides detailed timing information about service interactions
and their dependencies.

The scale and complexity of the dataset make it particularly valuable for developing and validating
new approaches to performance optimisation in distributed systems. Researchers can use it to study
critical pathanalysis, identify bottlenecks, andpropose improvements to servicearchitecturedesigns.
The consistency of service mappings across traces enables longitudinal studies of service behavior
and interaction patterns.

The dataset is especially relevant for research into microservice observability and monitoring. It can
be used to develop new techniques for anomaly detection, root cause analysis, and performance pre‑
diction. The inclusion of both successful and error cases provides a realistic foundation for studying
fault tolerance and resilience mechanisms in microservice architectures.

For machine learning researchers, the dataset offers opportunities to develop and evaluate models
for performance prediction, anomaly detection, and system behavior analysis. The large number of
traces provides sufficient data for training sophisticated models, while the preserved relationships
between services enable the study of complex interaction patterns.

Limitation
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The dataset’s availability through Zenodo ensures long‑term accessibility and reproducibility of re‑
search findings. However, researchers should note the significant storage and processing require‑
ments, as each compressed file requires 300‑500GB of disk space when decompressed. This consid‑
eration may influence research methodology and tool development approaches. Also, mapping is
inconsistent between Uber’s error and CRISP datasets so they can not be used together.

Testbed‑Generated Traces

Pre‑processed Tracing Data for Popular Microservice Benchmarks

This dataset contains tracing information from four enterprise‑level microservice benchmarks de‑
ployed on a dedicated Kubernetes cluster comprising 15 heterogeneous nodes (see [8]). Rather than
using sampling, the dataset focuses on specific request types from for four benchmark application:
Social Network, Media Service, Hotel Reservation and Train Ticket Booking.

The source applications are derived from two established benchmark suites: DeathStarBench and
Train‑Ticket. To simulate performance issues, it used performance anomaly injector from the FIRM
framework.

The dataset underwent preprocessing from raw data generated by FIRM’s tracing system. The data is
categorised based on the location of performance anomalieswithin themicroservices architecture.

Anomalies in Microservice Architecture (train‑ticket) based on version configurations

This work provides ten datasets containingmonitoring data (logs, Jaeger Traces and Prometheus KPI
data) for microservices (see [9]). The datasets was generated using Train‑Ticket.

Comparison of Datasets

The following table summarises the key features of the discussed datasets:
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Dataset Source Scale Characteristics Applications URL

Huye et.
al
(2023)

Meta 18.5k
services,
12M
service
instances,
6.5M
traces

Highly dynamic
topology,
heterogeneous
services

Topology
modeling,
performance
prediction

URL

Luo et.
al
(2022)

Alibaba 20K
services,
10K+
nodes,
20M
traces,
1M+
containers

Detailed resource
metrics, dynamic call
graphs

Resource
scheduling,
dependency
analysis

URL 2021 URL 2022

Zhang
et. al
(2022)

Uber 40K
endpoints,
4K
services,
100k
traces

Critical path analysis,
aggregated insights

Bottleneck
analysis, anomaly
detection

URL

Zhang
et. al
(2025)

Uber 11B RPCs,
1.9
endpoints,
1.5M+
traces

Error resilience,
latency impact
analysis

Error handling
strategies, fault
detection

URL Part 1 URL Part
2

Haoran
et. al
(2020)

Synthetic
Testbed

Simulated
workloads

Simplified
e‑commerce and
social networking
traces

Scheduling
algorithms, fault
injection

URL

Steidl,
M.
(2022)

Synthetic
Testbed

Simulated
workloads

Focused on user
sessions and service
interactions

Service
orchestration,
fault tolerance

URL
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Conclusion

Distributed tracing datasets are critical for microservices research. The real‑world distributed trace
datasets from companies like Meta, Alibaba, and Netflix offer a glims into the challenges and oppor‑
tunities within large‑scale microservices architecture. Microservices testbeds offer alternative to col‑
lect distributed traces with limited coverage yet more flexibility. Leveraging both types of datasets
ensures that researchers can address diverse challenges, from surfacing performance bottlenecks to
modelling traces as service dependent and call graphs to designing caching at call chain level (see
[10], [11]). Expanding the coverage and access to these datasets will be important to solve various
challenges related to microservices architecture.
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