
Engineering excellence: the art of
doing small things really well

Abhishek Tiwari

Citation: A. Tiwari, ”Engineering excellence: the art of doing small things
really well”, Abhishek Tiwari, 2024. doi:10.59350/tv006-nyg03

Published on: September 15, 2024

https://orcid.org/0000-0003-2222-2395
https://doi.org/10.59350/tv006-nyg03

Engineering excellence: the art of doing small things really well 1

Recently I have been reading Art of Leadership, The: Small Things, Done Well by Michael Lopp. This
book is an excellent read and it covers small things that you can do to build trust and to become an
authentic and true leader to your team at different stages of your leadership journey. Michael use
stories from his tenure as manager at Netscape , as director at Apple , and as executive at Slack to
capture and distill a list of wisdom to help anyone be effective at management and leadership. Book
advocates that by focusing on the small things and executing them well, leaders can create a lasting
impact on their teams and organisations. It argues that great leaders understand that success is built
on a foundation of countless small, well‑executed actions.

While reading thebook, I hadan interesting realisation that doing small things reallywell canalso lead
to engineering excellence. Look aroundand youwill find 100s of opportunities tomake small changes
with lasting impact. In this post we will look at some example of small well‑executed actions.

What is engineering excellence?

Engineering excellence, in the context of software development, is the relentless pursuit of quality,
efficiency, and effectiveness in every aspect of our work. It’s not just about writing code that works;
it’s about crafting solutions that are elegant, maintainable, and scalable. It’s about paying attention
to the minutiae that, when combined, create a robust and reliable system.

Examples of small things that matter

Here are a few good examples which I can think off, small yet highly impactful:

Keeping dependencies up‑to‑date

Regularly updating libraries and dependencies is a crucial practice that can prevent security vulner‑
abilities and ensure you’re benefiting from the latest improvements. This seemingly small task can
have a significant impact on the overall health and security of your project.

Outdated dependencies can expose your application to known security vulnerabilities, potentially
compromising your system’s integrity. They may also lack performance improvements or bug fixes
that could benefit your project. By staying up‑to‑date, you not only enhance security but also take
advantage of new features and optimizations that could improve your application’s performance and
functionality.

However, manually tracking and updating dependencies can be time‑consuming and error‑prone.
This is where automated tools can play a crucial role in maintaining engineering excellence withmin‑
imal effort.

Abhishek Tiwari 10.59350/tv006-nyg03 2024‑09‑15

https://doi.org/10.59350/tv006-nyg03

Engineering excellence: the art of doing small things really well 2

Automating dependency updates using GitHub Dependabot

GitHub’s Dependabot is an excellent example of how small, automated processes can contribute to
engineering excellence. Dependabot can automatically create pull requests to update your depen‑
dencies when new versions are available. When combined with GitHub’s auto‑merge feature, it can
streamline theprocess of keeping your dependencies up‑to‑datewithminimal human intervention.

Listing 1: Dependabot config to check for updates to npm packages and Docker images weekly,
create pull requests for updates, and apply specific labels to these pull requests.

version: 2
updates:
- package-ecosystem: "npm" # For JavaScript projects using npm

directory: "/"
schedule:

interval: "weekly"
open-pull-requests-limit: 10
target-branch: "develop"
labels:

- "dependencies"
- "automerge"

versioning-strategy: auto

- package-ecosystem: "docker"
directory: "/"
schedule:

interval: "weekly"

By implementing this system, youensure that your project is alwaysusing the latest secure versionsof
its dependencies, with minimal manual intervention. This small, automated process can save count‑
less hours of manual work and significantly reduce the risk of security vulnerabilities sneaking into
your project through outdated dependencies.

Listing 2: Github Actions workflow to automatically merge Dependabot pull requests that only
include minor or patch version updates, assuming they pass all required checks.

name: Auto-merge Dependabot PRs

on:
pull_request:

jobs:
auto-merge:

runs-on: ubuntu-latest
if: github.actor == 'dependabot[bot]'
steps:

- uses: actions/checkout@v2
- uses: ahmadnassri/action-dependabot-auto-merge@v2

Abhishek Tiwari 10.59350/tv006-nyg03 2024‑09‑15

https://doi.org/10.59350/tv006-nyg03

Engineering excellence: the art of doing small things really well 3

with:
target: minor
github-token: ${{ secrets.GITHUB_TOKEN }}

Remember, while automation is powerful, it’s still important to review significant updates, especially
major version changes that might include breaking changes. The goal is to strike a balance between
staying up‑to‑date andmaintaining stability in your project.

Documenting decisions

Keeping a record of why certain technical decisions were made can provide crucial context for future
development, ideally through Architecture Decision Records (ADRs) or Request for Comments (RFCs).
For these documents, the “why” is more important than the “how”.

ADRs and RFCs serve as a historical record of significant decisions in a project. They capture the con‑
text around a decision, which is often lost over time as teammembers change ormemories fade. This
context is crucial for understanding the rationale behind the current state of a system, which can in‑
form future decisions and prevent the repetition of past mistakes.

When creating these documents, focus on answering questions like: What was the problem we were
trying to solve? What constraints were we operating under? What alternatives did we consider? Why
did we choose this particular solution over others?

The “how” of implementation is important, but it’s typically well‑documented in the code itself and
associated technical documentation. The “why”, on the other hand, is often not captured anywhere
else.

Listing 3: An example ADR explaining why a team chose to use a particular database technology.

ADR 1: Choice of Database Technology

Context
Our application needs to handle large volumes of unstructured data with

high write throughput.

Decision
We will use MongoDB as our primary database.

Rationale
- MongoDB's document model suits our unstructured data better than a

relational model.
- It offers high write performance, which meets our throughput

requirements.
- Our team has experience with MongoDB, reducing the learning curve.
- It provides good scalability options for our future growth plans.

Abhishek Tiwari 10.59350/tv006-nyg03 2024‑09‑15

https://doi.org/10.59350/tv006-nyg03

Engineering excellence: the art of doing small things really well 4

Consequences
- We'll need to carefully design our data model to avoid performance

issues with large documents.
- We'll lose some of the strong consistency guarantees offered by

relational databases.
- We may need to implement our own solutions for complex queries that

would be simple in SQL.

Above ADR clearly explains why MongoDB was chosen, providing future developers with the con‑
text they need to understand and work with this decision. It doesn’t go into the details of how
MongoDB will be implemented – that information belongs in technical specifications and code
documentation.

By consistently creating and maintaining these records, teams build a valuable knowledge base that
supports long‑term maintainability and informed decision‑making. This practice, while small and
often overlooked, can have a significant impact on the overall excellence of a software engineering
project.

Feature branching and semantic versioning

A prime example of how small, well‑executed practices can lead to engineering excellence is the use
of feature branching with semantic versioning, integrated into a Continuous Integration (CI) system.
This approach, when implemented consistently, can significantly improve code quality, release man‑
agement, and team collaboration.

Teams often use a branching strategy where each new feature or bug fix is developed in its own
branch. These branches are named following a specific convention, often including the type of
change (feature, bugfix, hotfix) and a brief description. For example: feature/user-
authentication or bugfix/login-timeout.

Semantic versioning is then used to version the software. This typically follows the format MAJOR
.MINOR.PATCH (e.g., 2.3.1), where each number is incremented based on the nature of the
changes.

When these practices are combined with a CI system, it creates a powerful workflow. As developers
push their feature branches, the CI system can automatically build the code, run tests, and even gen‑
erate versionedbuild artifacts. For instance, a feature branchmight produce a pre‑release version like
2.4.0-feature.user-authentication.1.

To enforce these practices, teams often employ Git hooks. These are scripts that run automatically
on certain Git events. For example, a pre‑commit hook can check that the branch name follows the
agreed‑upon convention. A commit‑msg hook can ensure that commit messages adhere to a spe‑

Abhishek Tiwari 10.59350/tv006-nyg03 2024‑09‑15

https://doi.org/10.59350/tv006-nyg03

Engineering excellence: the art of doing small things really well 5

cific format, perhaps including a reference to a ticket number or following a conventional commit
format.

These may seem like small details, but they contribute significantly to the overall quality and man‑
ageability of the software development process. They ensure consistency, improve traceability, and
make it easier to understand the history and state of the project at any given time.

Git Hook: Enforcing branch naming convention

To illustrate how these small practices can be implemented, let’s look at a concrete example of a Git
hook that enforces a branch naming convention. This pre‑push hook, written in Bash, ensures that all
branch names follow a specific pattern before allowing a push to the remote repository.

Listing 4: Git hook allows only branch names starting with 'feature/', 'bugfix/', or 'hotfix/', followed
by lowercase letters, numbers, and hyphens. If the branch name doesn't match, it prints an error
explaining the convention and exits with a non‑zero status, which prevents the push.

#!/bin/bash

File: .git/hooks/pre-push
Make this file executable: chmod +x .git/hooks/pre-push

Define the allowed branch name pattern
This pattern allows: feature/, bugfix/, hotfix/ followed by lowercase

letters, numbers, and hyphens
allowed_pattern="^(feature|bugfix|hotfix)/[a-z0-9-]+$"

Get the current branch name
branch=$(git symbolic-ref --short HEAD)

if [[! $branch =~ $allowed_pattern]]; then
echo "Error: Branch name '$branch' does not follow the naming

convention."
echo "Branch names should start with 'feature/', 'bugfix/', or 'hotfix

/' followed by lowercase letters, numbers, and hyphens."
echo "Example: feature/user-authentication"
exit 1

fi

If we've made it here, the branch name is valid
exit 0

Above script, barely 20 lines long, can have a significant impact onmaintaining consistency across an
organisation. It ensures that all teammembers follow the same branching convention, which in turn
makes it easier to understand the purpose of each branch at a glance, automate processes based on
branch names, andmaintain a clean and organised repository.

Abhishek Tiwari 10.59350/tv006-nyg03 2024‑09‑15

https://doi.org/10.59350/tv006-nyg03

Engineering excellence: the art of doing small things really well 6

Git Hook: Preventing accidental commit of secrets

Another crucial use of Git hooks is to prevent the accidental commitment of sensitive information,
such as API keys or passwords. Here’s an example of a pre‑commit hook that checks for potential
secrets in the files being committed:

Listing 5: An example Git hook to prevent accidental commit of the secrets. For each staged file, it
checks the content against each secret pattern. If any potential secrets are detected, the hook exits
with a non‑zero status, preventing the commit from proceeding.

#!/bin/bash

File: .git/hooks/pre-commit
Make this file executable: chmod +x .git/hooks/pre-commit

Define patterns for potential secrets
secret_patterns=(

'password\s*=\s*['"'"'"]\w+['"'"'"]'
'api[_-]key\s*=\s*['"'"'"]\w+['"'"'"]'
'secret\s*=\s*['"'"'"]\w+['"'"'"]'
'aws_access_key_id\s*=\s*['"'"'"]\w+['"'"'"]'
'aws_secret_access_key\s*=\s*['"'"'"]\w+['"'"'"]'

)

Get list of staged files
staged_files=$(git diff --cached --name-only)

Flag to track if any secrets are found
secrets_found=false

Check each staged file
for file in $staged_files; do

Skip binary files
if [[-z $(grep -Ia . < "$file")]]; then

continue
fi

Check file content against secret patterns
for pattern in "${secret_patterns[@]}"; do

if grep -Eq "$pattern" "$file"; then
echo "Potential secret found in $file"
grep -En "$pattern" "$file"
secrets_found=true

fi
done

done

If secrets are found, abort the commit
if $secrets_found; then

Abhishek Tiwari 10.59350/tv006-nyg03 2024‑09‑15

https://doi.org/10.59350/tv006-nyg03

Engineering excellence: the art of doing small things really well 7

echo "Error: Potential secrets found in commit. Please remove them and
try again."

exit 1
fi

If we've made it here, no secrets were found
exit 0

Above hook can prevent a catastrophic security breach caused by accidentally committing sensitive
information to a repository. It’s a prime example of how a simple, proactivemeasure can significantly
enhance the security practices of a development team.

By implementing practices like these, teams can build a foundation of small, well‑executed actions
that contribute to overall engineering excellence. Each individual action might seem minor, but to‑
gether they create a robust, secure, and efficient development process.

Automated linting in development workflows

One of the most impactful small practices in modern software development is the use of automated
linting tools integrated directly into the development workflow. This can be achieved through two
primary methods: IDE integration and pre‑commit hooks.

When integrated into an Integrated Development Environment (IDE), linters can provide real‑time
feedback as developers write code. These tools analyze the code for potential errors, style violations,
and adherence to best practices, offering immediate suggestions for improvements. This instant feed‑
back loopallowsdevelopers to correct issues on the fly, leading tohigher quality code from theoutset.
Popular IDEs like Visual Studio Code, IntelliJ IDEA, and others offer robust support for various linting
tools across different programming languages.

Listing 6: An example of how ESLint automatically fixed several issues in code: (1) Removed
unnecessary spaces in the function declaration (2) Changed var to const (assuming you're using ES6+
(3) Added a semicolon at the end of each statement (4) Fixed indentation.

// Before saving:
function badlyFormattedFunction () {

var x = 'This is a badly formatted string'
return x

}

// After saving:
function badlyFormattedFunction() {
const x = 'This is a badly formatted string';
return x;

}

Abhishek Tiwari 10.59350/tv006-nyg03 2024‑09‑15

https://doi.org/10.59350/tv006-nyg03

Engineering excellence: the art of doing small things really well 8

Pre‑commit hooks, on the other hand, act as a final checkpoint before code is committed to version
control. These hooks can be configured to run linting checks automatically whenever a developer
attempts tomake a commit. If any linting rules are violated, the commit canbeblocked, ensuring that
only codemeeting the project’s standardsmakes it into the repository. This approach helpsmaintain
consistent codequalityacross theentireprojectandprevents style‑related issues fromclutteringcode
reviews.

By implementing automated linting through both IDE integration and pre‑commit hooks, develop‑
ment teams can ensure consistent code style across the project and catch and correct potential errors
early in the development process. This approach significantly reduces time spent on style‑related dis‑
cussions in code reviews, allowing teammembers to focus on more substantive aspects of the code.
Furthermore, it serves as an effectivemechanism for enforcingbest practices andproject‑specific con‑
ventions automatically.

Automated linting also provides an invaluable learning mechanism for developers, especially those
new to the project or language. As they write code, they receive immediate feedback on best prac‑
tices and project conventions, accelerating their learning curve and helping them align with team
standards more quickly.

The power of automated linting lies in its ability to make code quality a natural part of the develop‑
mentprocess rather thananafterthought. These small, frequent checks compoundover time, leading
to significantly improved code quality, reduced technical debt, and increased developer productivity.
By baking these practices into the dailyworkflow, teams can achieve a higher standard of engineering
excellence with minimal additional effort. The cumulative effect of these small, automated checks is
a codebase that ismore consistent, moremaintainable, and less prone to errors, ultimately contribut‑
ing to the overall success of the software project.

The compounding effect

Just as in leadership, these small actions in engineering compoundover time. A codebase that consis‑
tently applies these practices becomes increasingly robust, maintainable, and efficient. Team mem‑
bers who habitually focus on these details often find that their productivity increases, bugs decrease,
and the overall quality of their work improves dramatically.

As engineering organizations grow larger, the payoff from these small actions becomesmassive. Let’s
consider a few scenarios:

1. In an organization with 1,000 engineers, if 10% of them accidentally commit a secret once a
month, and preventing each incident saves 1 hour of remediation time, that’s 100 hours saved
per month. Over a year, this amounts to 1,200 hours or 150 working days saved.

Abhishek Tiwari 10.59350/tv006-nyg03 2024‑09‑15

https://doi.org/10.59350/tv006-nyg03

Engineering excellence: the art of doing small things really well 9

2. If youhave 100 repositories, andusingDependabot saves 2 hours per repository permonth that
would have been spent manually updating dependencies, that’s 200 hours saved per month.
This translates to 2,400 hours or 300 working days saved per year.

3. If each of the 1,000 engineers saves just 5 minutes a day due to consistent, automatically en‑
forced code formatting, that’s 83 hours saved daily. Over a year, this could save over 20,000
hours of developer time.

These examples illustrate how small, seemingly insignificant actions can lead to enormous time and
resource savings when implemented across a large organization. Moreover, these practices not only
save time but also prevent potential security breaches, reduce technical debt, and improve overall
code quality.

The true power of these small actions lies not just in the immediate time saved, but in the cumulative
effect they have on the organization’s engineering culture. They foster an environment of conscien‑
tiousness and attention to detail, where excellence becomes the norm rather than the exception. This
cultural shift can lead to innovations, improved product quality, and ultimately, better outcomes for
the business and its customers.

Cultivating a culture of excellence

Engineering excellence isn’t just about individual actions; it’s about fostering a team culture that val‑
ues and prioritizes these small but important details. This culture can be built by leading by example,
recognizing and rewarding attention to detail, providing time and resources for continuous improve‑
ment, and encouraging knowledge sharing andmentorship.

Conclusion

As software engineers and leaders, it’s easy to focus solely on the big picture and overlook the small
details. However, true engineering excellence lies in the art of doing small things reallywell. Bypaying
attention to these details and consistently executing themwith care, we can create software that not
only works but excels in quality, maintainability, and user satisfaction.

Remember, excellence is not an act, but a habit. Start small, be consistent, and watch as these tiny
improvements compound into significant results. The path to engineering excellence is paved with
small, well‑executed actions. What small thing will you improve today?

Abhishek Tiwari 10.59350/tv006-nyg03 2024‑09‑15

https://doi.org/10.59350/tv006-nyg03

	What is engineering excellence?
	Examples of small things that matter
	Keeping dependencies up-to-date
	Automating dependency updates using GitHub Dependabot
	Documenting decisions
	Feature branching and semantic versioning
	Git Hook: Enforcing branch naming convention
	Git Hook: Preventing accidental commit of secrets
	Automated linting in development workflows

	The compounding effect
	Cultivating a culture of excellence
	Conclusion

