
Friends don’t let friends build data
pipelines

Abhishek Tiwari
 

 

Citation: A. Tiwari, ”Friends don’t let friends build data pipelines”,
Abhishek Tiwari, 2018. doi:10.59350/hcf5n-nfg79

Published on: July 12, 2018

https://orcid.org/0000-0003-2222-2395
https://doi.org/10.59350/hcf5n-nfg79


Friends don’t let friends build data pipelines 1

Building data pipelines can offer strategic advantages to the business. It can be used to power new
analytics, insight, and product features. Often companies underestimate the necessary effort and
cost involved to build and maintain data pipelines. Data pipeline initiatives are generally unfinished
projects.

In this post, we will discuss why you should avoid building data pipelines in first place. Depending on
the use cases, it is quite possible that you can achieve similar outcomes by using techniques such as
data virtualisation or simply buildingmicroservices. And if you have a genuine data pipeline problem
waiting to be solved, thenwewill explore how to approach this in a practical way – by confronting the
8 fallacies of the data pipeline. Lastly, we will talk about the internal platform and product divide –
one key reasonwhydata pipeline initiatives typically fail – andwhy it is betterworking backward from
the product.

Data Pipeline

A data pipeline is a software that ingests data frommultiple sources, transforms it and finally makes
it available to internal or external products. In recent times, in order to gain valuable insights or to
develop the data‑driven products companies such as Netflix, Spotify, Uber, AirBnB have built inter‑
nal data pipelines. These data pipelines can process data at petabytes scale and to some extent,
their success can be attributed to an army of engineers devoted to build and maintain internal data
pipelines.

If built correctly, data pipelines can offer strategic advantages to the business. It can be used to
power new analytics, insight, and product features. Unfortunately, building data pipelines remains
a daunting, time‑consuming, and costly activity. Not everyone is operating at Netflix or Spotify scale
data engineering function. Often companies underestimate the necessary effort and cost involved to
build and maintain data pipelines. Nonetheless, there is hardly anyone talking about the failed data
pipeline initiatives.

Pipeline Topology

A data pipeline is synonyms to a directed acyclic graph (DAG) which consists of a set of nodes con‑
nected by edges. Depending on frameworks, data processing units (a.k.a jobs) can be nodes of the
graph and data (data stream or batch file) can be edges, and vice‑versa. This includes both data
pipeline developed using batch‑driven frameworks such as Apache AirFlow, Luigi, etc. as well as data
pipelines operating on the data stream and built using frameworks such as Apache Storm, Apache
Flink, etc. These nodes and edges require a good amount of compute and storage which is typically

Abhishek Tiwari 10.59350/hcf5n-nfg79 2018‑07‑12

https://doi.org/10.59350/hcf5n-nfg79


Friends don’t let friends build data pipelines 2

distributed across a large number servers either running in the cloud or your own data center. In a
nutshell, a data pipeline is a distributed system.

The 8 fallacies of data pipeline

Based onmy own learnings and experience shared by others, a data pipeline project is never finished.
One of the key reason is the false assumptions that engineering teams and companies generallymake
when implementing data pipelines. Here are 8 fallacies of data pipeline

• The pipeline is reliable
• Topology is stateless
• Pipeline is infinitely scalable
• Processing latency is minimum
• Everything is observable
• There is no domino effect
• Pipeline is cost‑effective
• Data is homogeneous

The pipeline is reliable

The inconvenient truth is that pipeline is not reliable. A data pipeline is a softwarewhich runs on hard‑
ware. The software is error‑prone and hardware failures are inevitable. A data pipeline can process
data in a different order than they were received. In certain scenarios exactly‑once semantics is pos‑
sible but the best you can do is at‑least‑once or at‑most‑once. Generally speaking, data pipelines are
leaky by nature. Pipeline reliability andperformance gohand in hand. If tuned for performance, there
is a good change reliability is compromised ‑ and vice versa. If certain steps fail, your lifeline is the
number of retries after that data loss is a no‑brainer. If the whole pipeline fails, maybe you can replay
as long as data semantic are handled properly by your application logic such as the de‑duplication
based on key attributes.

Topology is stateless

Another harsh reality is that most of data pipelines are not stateless. To process the data, a pipeline
may need either transactional commits or reference master data ‑ a form of state which needs to be
continuously updated. Keeping state outside the pipeline can drastically slow down data processing
‑ imagine reading reference data from external service either via API call or through data connectors.

Abhishek Tiwari 10.59350/hcf5n-nfg79 2018‑07‑12

https://doi.org/10.59350/hcf5n-nfg79


Friends don’t let friends build data pipelines 3

Keeping reference localised in the pipeline is a smart option ‑ although it requires frequent data up‑
dates. As an example, if one of the steps in your pipeline is location data enrichment by referencing
the IP address attribute of the incoming data streamwith the geo‑IP reference data then geo‑IP refer‑
ence data is a state which needs to maintained and updated on a frequent basis.

Pipeline is infinitely scalable

Given the elasticity offered by public clouds, one would think that data pipelines are infinitely scal‑
ablewhich is entirelymisleading. Asmentioned before,most of data pipelines are not statelesswhich
means scalability is not given a thing. Most likely individual components of data pipeline are scalable
but data pipeline as a whole is not scalable ‑ a phenomenon I refer as emergent behaviour where
coherent pipeline‑wide properties cannot be deduced directly from analysing the behaviour of indi‑
vidual pipeline components. Although based on the load it may be possible to infinitely scale the
data pipeline but that will comewith a cost whichmost companies other than Google or Amazon will
struggle to justify. Your best shot is proactive capacity planning and better resources utilisation by
removing inefficiencies.

Processing latency is minimum

If only you can infinitely scale your data pipeline, processing latency can be guaranteed to be mini‑
mum, but we know for sure that is not true. Every time data spikes ‑ a phenomenonwhich will be not
predictable in most cases ‑ overall latency to process the data using data pipeline will go up. In few
use cases, data pipeline latency or processing backlog combined with orderliness creates data fresh‑
ness problems. For instance, if your pipeline is designed to perform the real‑time streaming search on
incoming Tweets to identify any Tweet with offensive words in the context of certain brandmentions,
any spikes in the number of Tweets will result in processing delays.

Everything is observable

Things fail and shit happens but how canwe detect the problems in data pipeline as early as possible
and proactive response to those emerging issues in a timely manner? To be responsive, we need ex‑
tensive instrumentation which can help in detecting anomalies, micro and macro level trends. The
fact of thematter is to detect the trends or identify anomalies correctly and to keep alertsmeaningful
you need few baselines and/or thresholds. Unfortunately, we can not anticipate all possible failure
scenarios until we have seen enough of those incidents. This means despite having extensive observ‑
ability and monitoring we cannot detect new problems or issues unless we go through them. As an
example, for a completely new pipeline, we can’t be sure if x% drop in data processing is an anomaly

Abhishek Tiwari 10.59350/hcf5n-nfg79 2018‑07‑12

https://doi.org/10.59350/hcf5n-nfg79


Friends don’t let friends build data pipelines 4

or an expected behaviour. Only after running for a fewdays or sometimeweekswewill have a reliable
baseline to compare with.

There is no domino effect

Well, this is theworst part of a data pipeline. Cascading effects ‑ either due to software errors or unde‑
tected data changes ‑ are quite frequent. A common problem is when your data feed or API provider
change datamodel withoutmuch notice ‑ updates or deletion of existing attributes or non‑backward
compatible schema changes ‑ it can impact the quality and accuracy of the data pipeline. Something
similar Facebook did after Cambridge Analytica Fiasco, without giving enoughwarning to their public
API users theymade several big non‑backward compatible schema changes in a short timewhich led
to a domino effect.

Let take another example here, assume that your data pipeline is stitching identify of individual users
using cross‑device web access logs using a probabilistic method. It uses many possible geo‑location
attributes extracted from device fingerprint including country, state, city, zip‑code, latitude, and lon‑
gitude. Suddenly one day Apple releases a new user privacy feature which by default disable several
geo‑location attributes required by your identify stitching algorithm. Although your data pipeline can
handle this exception but process data incorrectly i.e. an irreversible and incorrect stitching of user
IDs. If this cross‑device identity is used to showmatching online adverts to individual users, youmay
start showing up online adverts based on the behaviour of one user to another user. By the time you
detect these issues, you may have processed data for a large number of users and problem is now
incomprehensible in many ways.

Pipeline is cost‑effective

The investment to build a pipeline can be very high ‑ both time and cost wise ‑many times unpre‑
dictable. In addition, most data pipeline initiatives don’t account for the hidden costs of maintaining
a data pipeline. Due to the emergence of newdata sources, continuously changing data technologies,
rapidly increasing data volumes, and unanticipated change in data landscape organisations require
dedicated engineering resources for ongoing maintenance of a data pipeline. A case in point, due
to increasing data volumes, engineering teams end‑up continuously optimising data pipeline for the
performance, sometimes it means an upgrade of the underlying data processing framework. Lack of
support for older versions is a common issuewithopensourcedatapipeline frameworkswhichmeans
you have to stay on top of the new releases and ensure that you are always close to the current stable
release.

Abhishek Tiwari 10.59350/hcf5n-nfg79 2018‑07‑12

https://doi.org/10.59350/hcf5n-nfg79


Friends don’t let friends build data pipelines 5

Data is homogeneous

It is worth the time to pay attention to the fact that data is not homogeneous on several levels ‑ from
lowest level data types (Integer, Float, Character, String, etc.) to higher level data formats (JSON, XML,
Arvo, Parquet, etc). By all means, data is heterogeneous. Plus data is constantly changing ‑ not to
mention it is corruptible andmutable. When building a data pipeline we cannot foresee the changing
nature of data and hence they need to adapt to cater to future emerging requirements. Moreover, the
cascading effect mentioned earlier makes the situation more complicated as any data related errors
can easily get propagated throughout the pipeline without being detected.

Twoworld views

The worldview of a data pipeline is linear. When an organisation starts processing data using the
pipeline as the main activity, communication and organisation structure get shaped in that direction
(InverseConwayManeuver) i.e. teamstartorganising themselvesarounddatapipelineand their com‑
munication structure become more liner (akin to a car assembly line). In some cases, particularly in
the supply chain, ad‑tech, and media intelligence environment, I have seen Spotify like squads work‑
ing on individual segments of the data pipeline. This can be efficient at the beginning but counter‑
productive in a long run. In particular, this creates several operational challenges as the model lacks
an end‑to‑end ownership.

Analternativeworldview is amatrix baseddataprocessingmodelwhich relies onmicroserviceswhich
each service owning its data store. I strongly think that most of the data pipeline problems can be
mapped into a matrix based microservices ecosystem. In some cases, this can be enhanced by com‑
bining data virtualization techniques with microservices architecture.

Abhishek Tiwari 10.59350/hcf5n-nfg79 2018‑07‑12

https://doi.org/10.59350/hcf5n-nfg79


Friends don’t let friends build data pipelines 6

Figure 1: Two world views ‑ Data pipeline architecture vs. microservices architecture with data
virtualisation.

Testing Hell

Testing and quality assurance with data pipeline is a nightmare. Due to distributed nature testing
datapipelines is a lot harder than contemporary applications. Typically, thesedatapipelines handle a
large volume of heterogeneous data ingested at high velocity. This demands rigorous non‑functional
testing to characterise performance, load, fault‑tolerance in conjunctionwith normal functional tests.
Moreover, identifying the scopes and scale for functional testing of a data pipeline is another area
where there is hardly many well‑documented strategies or best‑practices. You eventually learn how
to optimise the scope and scale of your tests but not without going through a painful experience. Al‑
though, end‑to‑end (E2E) tests can simulate the complete data pipeline behaviour‑ they are in many
ways a distraction. E2E tests are difficult to develop, very challenging to maintain, and they have a

Abhishek Tiwari 10.59350/hcf5n-nfg79 2018‑07‑12

https://doi.org/10.59350/hcf5n-nfg79


Friends don’t let friends build data pipelines 7

super slow feedback loop ‑ it can take hours before you can recognise that your recent changes have
failed the test.

Figure 2: Varying level of scopes and scale for functional testing of a data pipeline.

Data pipeline and product divide

If you are not a product organisation, the sole purpose of a data pipeline is to support advanced an‑
alytics and powerful insights. Even for the most product companies, a data pipeline is generally not
part of their core value proposition unless it is powering some key product features. In particular,
the majority of ad‑tech and digital analytics companies rely on robust data pipeline to analyse the in‑
comingweblogs to build behavioural analytics, customer segments. Similarly, companies like Spotify
and Netflix require personalisation layers based on petabyte scale data around content consumption
behaviours hence why they need data pipelines. In these type of scenarios deploying dedicated engi‑
neering resources to build andmaintain data pipeline is a no‑brainer.

As rule of thumb only build data pipeline if it can help you to achieve your core value proposition. For
a telecom company, the ability to monitor network congestion and failures is part of their core value
proposition. In the same vein ‑ for a bank, it will need to detect fraudulent transactions in real‑time

Abhishek Tiwari 10.59350/hcf5n-nfg79 2018‑07‑12

https://doi.org/10.59350/hcf5n-nfg79


Friends don’t let friends build data pipelines 8

and block it. Always start backward from the product and create a data lineage so you know what
data transformations or enrichments you need.

Lastly, do not let Inverse Conway Maneuver create an organisational silo i.e. data pipeline owned by
a data infrastructure function or IT and product owned by digital or engineering teams. To have a
successful data pipeline which positively enhances your core value proposition, your teams need an
end‑to‑end view.

Abhishek Tiwari 10.59350/hcf5n-nfg79 2018‑07‑12

https://doi.org/10.59350/hcf5n-nfg79

	Data Pipeline
	Pipeline Topology
	The 8 fallacies of data pipeline
	The pipeline is reliable
	Topology is stateless
	Pipeline is infinitely scalable
	Processing latency is minimum
	Everything is observable
	There is no domino effect
	Pipeline is cost-effective
	Data is homogeneous

	Two world views
	Testing Hell
	Data pipeline and product divide

