
Getting started with Conduit ‑
lightweight servicemesh for
Kubernetes

Abhishek Tiwari

Citation: A. Tiwari, ”Getting started with Conduit ‑ lightweight service
mesh for Kubernetes”, Abhishek Tiwari, 2017.
doi:10.59350/4t9wy-5c763

Published on: December 25, 2017

https://orcid.org/0000-0003-2222-2395
https://doi.org/10.59350/4t9wy-5c763

Getting started with Conduit ‑ lightweight service mesh for Kubernetes 1

On this blog from very early on, we have advocated the concept of service mesh. In fact, our post a
sidecar for your service mesh is one of the most viewed posts this year. When Buoyant announced
the Conduit ‑ their next‑generation lightweight service mesh for Kubernetes ‑ we were really thrilled.
Buoyant is also the creator of Linkerd which is one of the most widely used service mesh currently
available to the microservices community. Linkerd can already run on Kubernetes, Mesos, cluster of
hosts.

Why Conduit

First for all Kubernetes is certainly winning the container orchestration war. Now focus is shifting to‑
wards service mesh and how to make Kubernetes more productive for organizations trying to build
a large number of microservices using autonomous teams who own and operate their ownmicroser‑
vices. For Kubernetes, Istio ‑ currently supported by IBM, Google and Lyft ‑ has emerged as go to ser‑
vicemesh platform. Istio is being developed aggressively and it is evolving quite fast (current version
is 0.4). Both Istio and Linkerd are bit heavyweights and initial focus seems to be on large engineering
teams. That’s where Conduit fits really well. Conduit is very lightweight when compared to Istio and
Linkerd. Conduit features a native proxy written in Rust which makes it blazingly fast.

Conduit Architecture

When you first install Conduit on a Kubernetes cluster it creates a control plane. When you add a mi‑
croservice toConduit servicemesh it createsadataplaneproxywhich isdeployedas sidecar container
alongside your microservice code. To be more accurate, to add a microservice to Conduit, you have
to inject the data plane sidecar by modifying the Kubernetes config file for your service just before
deployment. The data plane is managed by control plane and control plane provides APIs to for mod‑
ifying its behavior. To interact with control plane you can either use Dashboard UI or the Conduit
command line interface (CLI) ‑ both utilize the control plane APIs.

Abhishek Tiwari 10.59350/4t9wy-5c763 2017‑12‑25

https://doi.org/10.59350/4t9wy-5c763

Getting started with Conduit ‑ lightweight service mesh for Kubernetes 2

Figure 1: Conduit Service Mesh Architecture

Conduit’s core connection with Kubernetes is the Deployment, not the Service. Conduit is using De‑
ployment primitive to inject a sidecar container (data plane) into individual pods. Due to the one‑to‑
one relationship between a pod and a deployment, the mapping between traffic flows and pod a lot
easier to manage.

Let’s get started

Prerequisite

I assume you have already installed the Docker, Minikube, and Kubectl. If not please follow this step‑
by‑step guide on how to setup Minikube as a local development environment for kubernetes. For
this tutorial you need minikube v0.24.1 or higher, kubectl v1.8.4 or higher, and Kubernetes v1.8.0 or
higher.

First, start the minikube with Kubernetes v1.8.0

minikube start --kubernetes-version v1.8.0

Next, run following command to validate if kubectl can connect minikube; it should print versions for
your kubectl and Kubernetes cluster.

kubectl version --short

Abhishek Tiwari 10.59350/4t9wy-5c763 2017‑12‑25

https://doi.org/10.59350/4t9wy-5c763

Getting started with Conduit ‑ lightweight service mesh for Kubernetes 3

Install Conduit CLI

Conduit CLI is designed to work in conjunction with kubectl whenever possible. Now, let’s install the
Conduit CLI and then add it to your path.

curl https://run.conduit.io/install | sh
export PATH=$PATH:$HOME/.conduit/bin

To add Conduit CLI, to your path permanently you can also edit your ~/.bashrc to add path and
reload it. For .zshrc, I added following line.

export PATH="$HOME/.conduit/bin:$PATH"

To check if everything is in place now run following command which should print client and server
version. Initially, server version will be unavailable as we have not created the control plane yet.

conduit version

Let look at various Conduit CLI commands.

conduit --help

For now, we are going to focus on three key commands,

• conduit dashboardwhich opens the Conduit dashboard in a web browser
• conduit injectwhich adds the Conduit proxy to a Kubernetes config
• conduit installwhich outputs Kubernetes configs to install Conduit

Conduit CLI provides a flag -n namespace for namespace in which Conduit is installed (default
“conduit”).

Both conduit install and conduit inject generate Kubernetes configurations which are
piped into the kubectl for orchestration. More importantly, you don’t need to change your app or
microservice to use the Conduit service mesh. For example, conduit inject can be used on an
existing live Deployment, as Kubernetes rolls pods to include the data plane proxy as it updates the
Deployment.

As you can see, Conduit provides a clear separation between service mesh, application code, and
orchestrator.

Install Conduit Control Plane

Now we are going to install Conduit control plane on your local Kubernetes cluster which is running
inside minikube. This will create few Kubernetese services and deployments required for Conduit
control plane to operate.

Abhishek Tiwari 10.59350/4t9wy-5c763 2017‑12‑25

https://doi.org/10.59350/4t9wy-5c763

Getting started with Conduit ‑ lightweight service mesh for Kubernetes 4

Running below command generates a Kubernetes config file, and then pipes it to kubectl.

conduit install | kubectl apply -f -

If you don’t want default “conduit” namespace you can pass your own namespace using -n flag (as‑
sumes namespace already exists).

conduit install -n my-namespace | kubectl apply -f -

At this point, control plane should be up and running. We can validate this by opening Conduit dash‑
board,

conduit dashboard

To access the dashboard onminikube you have to browse one of following URLs,

• 127.0.0.1:8001/api/v1/namespaces/conduit/services/web:http/proxy/routes or,
• localhost:8001/api/v1/namespaces/conduit/services/web:http/proxy/routes

Figure 2: Conduit Dashboard

Abhishek Tiwari 10.59350/4t9wy-5c763 2017‑12‑25

http://127.0.0.1:8001/api/v1/namespaces/conduit/services/web:http/proxy/routes
http://localhost:8001/api/v1/namespaces/conduit/services/web:http/proxy/routes
https://doi.org/10.59350/4t9wy-5c763

Getting started with Conduit ‑ lightweight service mesh for Kubernetes 5

Create Conduit Data Plane

To create data plane you need an app or a microservice with the Kubernetese config file. Ob‑
viously, this Kubernetes config file (let’s call it app-config.yml) can include of one or more
deployments/services specifications.

conduit inject app-config.yml | kubectl apply -f

emojivoto

Let start with example app emojivotomaintained by Conduit team.

The app is composed of the following 3 services:

• emojivoto‑web: Web frontend and REST API
• emojivoto‑emoji‑svc: gRPC API for finding and listing emoji
• emojivoto‑voting‑svc: gRPC API for voting and leaderboard

First, we are going to clone the repository.

git clone https://github.com/runconduit/conduit-examples.git
cd conduit-examples/emojivoto

Second, we will create data plane for this emojivoto app,

conduit inject emojivoto.yml --skip-inbound-ports=80 | kubectl apply -f -

This will deploy our emojivoto app with data plane as a sidecar. As of the now, the Conduit side‑
car only supports HTTP/2 (including gRPC) hence --skip-inbound-ports flag was used here to
bypass the proxy for any HTTP request.

You can view this app in a browser by visiting the public IP of the service. To findpublic IP onminikube
simply run following command,

minikube -n emojivoto service web-svc --url

Abhishek Tiwari 10.59350/4t9wy-5c763 2017‑12‑25

https://github.com/runconduit/conduit-examples/tree/master/emojivoto
https://doi.org/10.59350/4t9wy-5c763

Getting started with Conduit ‑ lightweight service mesh for Kubernetes 6

Figure 3: Data plane proxy deployments

Conduit Dashboard provides a detailed telemetry of deployments (those with data plane proxy) in‑
cluding requests per second, success rate, latency (in percentile), etc. It also brings the telemetry
about upstream and downstream deployments.

Another way to inspect the health of your deployments is using CLI commands conduit stat and
conduit tap.

You can display runtime statistics aboutmesh resources (pod or deployment) usingconduit stat
.

conduit stat deployments
conduit stat deployment emojivoto/emoji-svc

Similarly, conduit tap enables you to listen to a traffic stream (pod or deployment).

conduit tap deployment emojivoto/emoji-svc

First impression

From the perspective of a developer’sworkflow, it was a lot easier to setup and running Conduitwhen
compared to its counterpart IstioandLinkerd. Asofnow, it lacks someof thekey servicemesh features
such as inter‑service authentication which is on the roadmap.

Abhishek Tiwari 10.59350/4t9wy-5c763 2017‑12‑25

https://doi.org/10.59350/4t9wy-5c763

	Why Conduit
	Conduit Architecture
	Let’s get started
	Prerequisite
	Install Conduit CLI
	Install Conduit Control Plane
	Create Conduit Data Plane
	emojivoto

	First impression

