
How to Organise Your Infrastructure
as Code

Abhishek Tiwari
 

 

Citation: A. Tiwari, ”How to Organise Your Infrastructure as Code”,
Abhishek Tiwari, 2015. doi:10.59350/6ey3f-dxa55

Published on: December 22, 2015

https://orcid.org/0000-0003-2222-2395
https://doi.org/10.59350/6ey3f-dxa55


How to Organise Your Infrastructure as Code 1

DevOps is a cultural shift with immediate focus on maximising the business value by opting better
communication, collaboration and feedback within and across IT development and operation teams.
InfrastructureasCode (IaC) is akeyelementofDevOpsphilosophywithbenefits forbothdevelopment
and operation teams. The term infrastructure as code is sometimes also referred to as programmable
infrastructure. In an infrastructure as code implementation whole infrastructure lifecycle including
orchestration, provisioning, configuration,monitoring, self‑healing can bemanaged in an automated
fashion.

Traditionally infrastructure lifecycle management has been a manual process which has often
resulted in environmental inconsistencies. For instance, staging and UAT environments not fully
compatible with production environment is a very common issue in traditional technology functions.
This type of environmental inconsistencies often creates a lot of friction for application and solution
delivery hence slowing down or sometimes blocking the pace of innovation in a digital organisation.
In general, infrastructure as code offers the advantage for both cloud as well as on‑premise infras‑
tructure but it particularly brings major benefits when applied in a cloud environment. When used
in a cloud environment infrastructure as code has the potential to supercharge application delivery
without compromising the quality.

In this article, Iwould like to focusonhow toorganise your infrastructure as code ‑ something I haven’t
seen covered anywhere else in detail. In recent years, I have implemented infrastructure as code at
the scale at least 3 times and this article heavily borrows frommy learnings and experience on these
projects.

Infrastructure as Code Best Practices

First thing first, best practices are quite important for managing infrastructure as code in a highly
efficient way, so please consider following key recommendations for your infrastructure as code
project.

Codify everything

Whenever possible use code to describe the infrastructure. As you can see belowmost parts of tradi‑
tional and cloud infrastructure can be described as code.

• For infrastructure (physical or virtual servers) management Terraform, CloudFormation, YAML
and Python scripts

• For DNSmanagement various scripts typically interacting with DNS system via APIs
• For configuration management Puppet/Chef modules, Powershell/Bash scripts
• For network management Puppet/Chef modules

Abhishek Tiwari 10.59350/6ey3f-dxa55 2015‑12‑22

https://doi.org/10.59350/6ey3f-dxa55


How to Organise Your Infrastructure as Code 2

• For container management Dockerfile
• For remote command execution and deployment Fabric/Capistrano
• For local testing and development using Vagrantfile

Version everything

You should be versioning everything including build and binary artifacts. For versioning and change
tracking, you can use any source code management system (SCM), but I highly recommend Git to
manage infrastructure as code repository. Git is an open‑source distributed version control system.
Due to distributed nature and various collaborative branching models Git is highly scalable for a
project of any size. Although, Git is highly popular in DevOps community I am particularly interested
in Git Submodule functionality.

Moreover, I will suggest using an appropriate branching model according to your business needs. At
the minimum, you can use two branches master and develop. You can assumemaster branch
as fully tested shippable or deployable infrastructure code, everything else which is not fully tested
or under development remains in develop branch. Once changes in develop are ready you can
merge them in master. Before release or deploy from master, please use Git tagging functionality
to mark release points (v1.0, v 2.0 and so on).

One repository

I highly recommend strictly one infrastructure as code repository per organisation or company. Inmy
experience, one infrastructure as code repository is more than sufficient for an organisation of any
scale. In my opinion, one infrastructure as code repository should be an integral part of the DevOps
philosophy. This repository acts as an entry point or main function for your infrastructure as code
implementation. Having said that, you can alwaysmodularise your infrastructure as code implemen‑
tation and take one repository concept to next level as described below.

Modular components

Often one need to break infrastructure down into modular components and tie them together in an
automatable way. You can always modularise the external and internal dependencies. For exam‑
ple, if you are using a Puppet module or Chef cookbook for cookbooks then it makes perfect sense
to modularize them as the dependency. Modular components can be more manageable and offer
several benefits. Dependency management and access control are two key benefits of modular com‑
ponents.

Abhishek Tiwari 10.59350/6ey3f-dxa55 2015‑12‑22

https://git-scm.com/
https://git-scm.com/docs/git-submodule
https://www.atlassian.com/git/tutorials/comparing-workflows/
https://git-scm.com/book/en/v2/Git-Basics-Tagging
https://doi.org/10.59350/6ey3f-dxa55


How to Organise Your Infrastructure as Code 3

In order to do modular components at scale, I have found it’s quite essential to use Git submodules.
Git submodule functionality allows you to keep another Git repository in a subdirectory of your infras‑
tructure as code repository. The other Git repository maintains its own history and it has no impact
on the history of the infrastructure as code repository. Git submodule can be used to have external as
well as internal dependencies. This can be used as amechanism tomanage access control as youwill
bemaintaining separate Git repositories eachwith it’s own read andwrite permissions. When cloning
or pulling a repository infrastructure as code repository, submodules are not checked out automati‑
cally. You will need to issues explicit command to update or checkout Git submodule.

Test coverage

Testing infrastructureas code isquitenecessary. Toa largeextent, havinganoptimal test coveragewill
ensure there are no post‑deployment bugs. Typical change management process can not guarantee
that there will be no post‑deployment issues. In fact, this is one area where operations can learn and
adopt a lot of techniques from development. Currently, there are two popular testing approaches
in the infrastructure space: Behavior‑driven (inspired from BDD) and Test‑driven (inspired from TDD).
Dependingonyourneeda rangeof test suits canbedeveloped: unit tests, regression tests, acceptance
tests, end‑to‑end tests, and property tests. These test suites differ in terms of scope and focus.

Continous Integration

Continuous integration of your infrastructure is highly desirable. Continuous integration can enable
you to run automated tests suits every time a new change is committed into your infrastructure as
code repository. In addition, continuous integration can create deployable artifacts such backed vir‑
tual machines, AMIs and docker containers. Last but not least, it also pipelines the change manage‑
ment and deployment process.

Organising Infrastructure as Code

Now that we have covered key best‑practices for managing infrastructure as code, we can now dis‑
cuss how to organise your infrastructure as code. To make it easy, I have created a seed project for
infrastructure as code on Github which can be used as starting point or skeleton for your infrastruc‑
ture as code implementation. You can clone this repository and use it to quickly bootstrap your own
infrastructure as code project.

Abhishek Tiwari 10.59350/6ey3f-dxa55 2015‑12‑22

https://git-scm.com/docs/git-submodule
https://github.com/abhishektiwari/infrastructure-as-code
https://doi.org/10.59350/6ey3f-dxa55


How to Organise Your Infrastructure as Code 4

Figure 1: Seed project for Infrastructure as Code

To clone seed repository please run following commands from your terminal,

git clone https://github.com/abhishektiwari/infrastructure-as-code.git

Configuration

All configuration management code is placed under configuration folder which has subfolders
for providers (puppet and chef). Below these folders we have folders containing third‑party pack‑
ages as Git submodules (Pupppet modules or Chef cookbooks). These modules are responsible
for configuring individual servers but they can also be used for application deployment.

Abhishek Tiwari 10.59350/6ey3f-dxa55 2015‑12‑22

https://doi.org/10.59350/6ey3f-dxa55


How to Organise Your Infrastructure as Code 5

Figure 2: Infrastructure as code repository: Puppet module as Git submodule

Provisioning

All infrastructure orchestration and provisioning code is placed under provisioning folder which
subfolders for providers. At this stage, it accommodates Terraform, Cloudformation, boto and lib‑
cloud scripts. CloudFormation and boto are more focused on Amazon Web Services cloud, but Ter‑
raform along with libCloud are platform agonist and support majority of providers including Open
Stack and VMware.

Execution

For remote server automation and command execution Fabric and Capistrano scripts are used. When
using Fabric and Capistrano on a large number of servers, execution can be in parallel or sequentially.
It is possible to perform the remote execution using the Puppet/Chef but their approach is mostly
pull based (nodes pulling configuration frommaster) and Fabric/Capistrano executionmodel is push
based. Both Fabric and Capistrano execute predefined tasks. Tasks are nothing but Python/Ruby
functions with the wrapper around the Bash/Powershell commands.

fab task1 task2 task3
cap task1 task2 task3

Normally, the first task sets the remote host where the commands or tasks will be executed followed
by a list of tasks to execute on remote hosts.

fab production update_os
cap production update_os

Let’s look into update_os task defintion for Fabric,

Abhishek Tiwari 10.59350/6ey3f-dxa55 2015‑12‑22

https://doi.org/10.59350/6ey3f-dxa55


How to Organise Your Infrastructure as Code 6

@parallel
def update_os():

sudo('apt-get update -y')
sudo('apt-get upgrade -y')

As you can see from above examples that the tasks are executable units and they can be easily de‑
scribed as code.

Environments

Now thatwe have building blocks to create, configure and update the infrastructure environment, we
can nowdefine and run applications on these environments. In this particular case,environments
folder is more like testbed to perform development and testing using Vagrant and Docker. Under
environments you can createGit submodule for application environments such aswebsite,cms,
etc. and include appropriate Vagrantfile and Dockerfile. Using submodules means your ap‑
plication environment dependencies can resolve. For instance, yourVagrantfile refers to Puppet
manifest andmodules both sits inside the infrastructure as code repository. Ideally, your application
developers should be able to use these Vagrantfile and Dockerfile included in thesemodules as appli‑
cation development environment.

Figure 3: Environments as Git submodules

Closing comments

This seed project for infrastructure as code still a work in progress. So feel free to send a pull request.
Currently, repository structure is highly opinionated and convention driven. I can think of few addi‑
tional ways to organise infrastructure as code, but despite any possible shortcomings the repository
structure described in this article can scale very well. Lastly, if you think one repository per organisa‑
tion is not scalable then think once more.

Abhishek Tiwari 10.59350/6ey3f-dxa55 2015‑12‑22

https://github.com/abhishektiwari/infrastructure-as-code
https://news.ycombinator.com/item?id=7020584
https://doi.org/10.59350/6ey3f-dxa55

	Infrastructure as Code Best Practices
	Codify everything
	Version everything
	One repository
	Modular components
	Test coverage
	Continous Integration

	Organising Infrastructure as Code
	Configuration
	Provisioning
	Execution
	Environments
	Closing comments

