
Kubernetes for Big Data Workloads

Abhishek Tiwari
 

 

Citation: A. Tiwari, ”Kubernetes for Big Data Workloads”, Abhishek Tiwari,
2017. doi:10.59350/wh60e-4g784

Published on: December 27, 2017

https://orcid.org/0000-0003-2222-2395
https://doi.org/10.59350/wh60e-4g784


Kubernetes for Big Data Workloads 1

Kubernetes has emerged as go to container orchestrationplatform for data engineering teams. Kuber‑
netes has amassive community support andmomentumbehind it. In 2018, a widespread adaptation
of Kubernetes for big data processing is anitcipated. Organisations are already using Kubernetes for
a variety of workloads12 and dataworkloads are up next. Kubernetes has been particularly successful
with microservices and contemporary applications. In fact, if we go by current trends containerised
microservices running on Kubernetes are the future.

Benefits

Containerizeddataworkloads running onKubernetes offer several advantages over traditional virtual
machine/bare metal based data workloads including but not limited to

• better cluster resource utilization
• portability between cloud and on‑premises
• frictionless multi‑tenancy with versioning
• simple and selective instant upgrades
• faster development and deployment cycles
• isolation between different types of workloads
• unified interface to all types of workload

Key challenges

Over last few years, we have seen several attempts to run data workload in the containers especially
distributed big data frameworks like Apache Hadoop, Apache Storm3, and Apache Spark45 without
any software modifications. Obviously, containerized data workloads have their own challenges.
Some of these challenges6 includes,

• lack of smart schedulers for optimal resource utilization
• faster access to external storage and data locality (I/O, bandwidth)
• distributed stateful data workloads (Zookeeper, Cassandra)
• optimised container networking and security
• overall performance comparable to bare metal
• support for logging, monitoring, and observability
• overall characteristic of data workload varies (batch vs. stream)

1Workload Characteristics and Candidates for Containerization
2Running Workloads in Kubernetes
3Apache Storm cluster using Kubernetes and Docker
4Apache Spark cluster using Kubernetes and Docker
5Using Spark and Zeppelin to process big data on Kubernetes 1.2
6Lessons learned running Hadoop and Spark in Docker

Abhishek Tiwari 10.59350/wh60e-4g784 2017‑12‑27

https://rhelblog.redhat.com/2016/04/21/architecting-containers-part-4-workload-characteristics-and-candidates-for-containerization/
https://medium.com/google-cloud/running-workloads-in-kubernetes-86194d133593
https://github.com/kubernetes/examples/blob/master/staging/storm/README.md
https://github.com/kubernetes/examples/tree/master/staging/spark
http://blog.kubernetes.io/2016/03/using-Spark-and-Zeppelin-to-process-Big-Data-on-Kubernetes.html
https://conferences.oreilly.com/strata/strata-ny-2016/public/schedule/detail/52042
https://doi.org/10.59350/wh60e-4g784


Kubernetes for Big Data Workloads 2

As you can see there are a few interesting challenges to run big data workload on Kubernetes. The
good news is all of these challenges including performance can be tackled and in several cases, there
are new developments to overcome them.

Performance

A recent performance benchmark completed by Intel and BlueData using the BigBench benchmark‑
ing kit has shown that the performance ratios for container‑based Hadoop workloads on BlueData
EPIC are equal to and in some cases, better than bare‑metal Hadoop 7. The workloads for both test
environments ran on apples‑to‑apples configurations. Under the hood, the BlueData used several en‑
hancements to boosts the I/O performance and scalability of container‑based clusters. As illustrated
below, a similar performance ratio was observed for container‑based Spark cluster vs. bare‑metal
Spark cluster.

Figure 1: Spark on Docker: Performance. Credits BlueData

Native frameworks

Rather than thinking data as a monolithic workload we can start considering it as a collection of con‑
tainerized microservices. We are talking about new Kubernetes native big data frameworks. Kuber‑
netes has all necessary primitives available to make it happen. Plus, Kubernetes offers us a verity
of container patterns to play with. For instance, scatter/gather pattern can be used to implement a

7Bare‑metal performance for Big Data workloads on Docker containers

Abhishek Tiwari 10.59350/wh60e-4g784 2017‑12‑27

https://software.intel.com/sites/default/files/managed/3e/35/BlueData-Intel_WP__d154__final2.pdf
https://doi.org/10.59350/wh60e-4g784


Kubernetes for Big Data Workloads 3

MapReduce like batch processing architecture on top of Kubernetes. Similarly, event‑driven stream
data processing is a lot easier to implement as microservices running on top Kubernetes.

Figure 2: An example of the scatter/gather pattern: a reusable root container implements client
interactions and request fan‑out to developer‑supplied leaf containers and to a developer‑supplied
merge container responsible for aggregating the results

A good example will be something like Pachyderm89 ‑ a relatively young project which implements
a distributed Pachyderm File System (PFS) and a data‑aware scheduler Pachyderm Pipeline Sys‑
tem (PPS) on top of Kubernetes. Pachyderm uses default Kubernetes scheduler to implement
8Pachyderm: Building a Big Data Beast On Kubernetes
9Pachyderm: Data Pipelines

Abhishek Tiwari 10.59350/wh60e-4g784 2017‑12‑27

https://www.slideshare.net/kubecon/pachyderm-building-a-big-data-beast-on-kubernetes
https://github.com/pachyderm/pachyderm
https://doi.org/10.59350/wh60e-4g784


Kubernetes for Big Data Workloads 4

fault‑tolerance and incremental processing. In addition, for FPS Pachyderm utilizes a copy‑on‑write
paradigm which inspired by Git. Basically, Pachyderm is applying version control to your data as it’s
processed which processing jobs run on only the diff.

Custom schedulers

A large number of companies are already running Kubernetes in production. In addition, you can run
mostof bigdata frameworksonKubernetesbut asmentioned in theprevious section thereare several
challenges and lackof smart schedulers is oneof them. Toaddress this, theopen source community is
now trying to develop Kubernetes custom schedulers specifically optimised for big dataworkloads.

Kubernetes scheduler is responsible for scheduling pods onto nodes. Kubernetes ships with a de‑
fault scheduler which provides a range of scheduling features. To schedule pods onto nodes, Kuber‑
netes default scheduler considers several factors including individual and collective resource require‑
ments, quality of service requirements, hardware constraints, affinity or anti‑affinity specifications,
data locality, inter‑workload interference and so on. Using default scheduler’s node affinity feature
youcanensure that certainpodsonly scheduleonnodeswith specializedhardware likeGPU,memory‑
optimised, I/O optimised etc. Similarly, pods affinity features allow you to place pods relative to one
another.

Kubernetes allows you to run multiple schedulers simultaneously. To have more control over the
scheduling of data workloads one can create custom schedulers. Apache Spark community is taking
this approach to natively run Spark on Kubernetes10111213. It is important to note, Spark can already
run on Kubernetes14, but in a standalone mode. Spark with native Kubernetes scheduler has several
advantages over standalonemode. For instance,

• Spark executors can be elastic depending on job demands since Spark can now communicate
to Kubernetes to provision executors as required

• Spark can now leverage existing Kubernetes constructs like resource quota, namespaces, audit
logging, etc.

• Spark can enforce stronglymulti‑tenant andmulti‑user isolation requirements by using names‑
paces, affinity, taints etc.

10Apache Spark enhanced with native Kubernetes scheduler back‑end
11Support Spark natively in Kubernetes
12Support native submission of spark jobs to a Kubernetes cluster
13Apache Spark on Kubernetes
14Apache Spark cluster using Kubernetes and Docker

Abhishek Tiwari 10.59350/wh60e-4g784 2017‑12‑27

https://github.com/apache-spark-on-k8s/spark
https://github.com/kubernetes/kubernetes/issues/34377
https://issues.apache.org/jira/browse/SPARK-18278
https://www.slideshare.net/databricks/apache-spark-on-kubernetes-anirudh-ramanathan-and-tim-chen
https://github.com/kubernetes/examples/tree/master/staging/spark
https://doi.org/10.59350/wh60e-4g784


Kubernetes for Big Data Workloads 5

Figure 3: Apache Spark on Kubernetes. Image Credits Anirudh Ramanathan and Tim Chen.

Furthermore, the performance of Spark with native Kubernetes scheduler can be improved by run‑
ning HDFS inside Kubernetes. This enables HDFS data locality by discovering the mapping of Kuber‑
netes containers to physical nodes to HDFS datanode daemons15. Basically having HDFS in Kuber‑
netes makes schedule data‑aware.

Kubernetes custom scheduler is a relatively new feature which was released in version 1.6. It is pos‑
sible to use YARN as Kubernetes custom scheduler. A few years back, Hortonworks tried to create a
fork of Kubernetes with YARN scheduler16 but at that time support for multiple schedulers was not
available in Kubernetes.

Twitter Heron is another good example of this approach. Heron is a real‑time, distributed stream
processing engine developed at Twitter. It can be considered as a drop‑in replacement for Apache
Storm. Just like Apache Storm, Heron has a concept of topology. A topology is a directed acyclic
graph (DAG) used to process streams of data and it can be stateless or stateful. Heron topology is
essentially a set of pods that can be scheduled by Kubernetes.

Heron scheduler converts packing plan for a topology into pod definitions which is then submitted to
Kubernetes scheduler via APIs17. A topology canbeupdated (scale upor downbasedon load)without
having to build a new JAR to submit to the cluster.

15kubernetes‑HDFS: HDFS cluster in Kubernetes
16A version of Kubernetes using Apache Hadoop YARN as the scheduler
17Experience porting Heron to Kubernetes

Abhishek Tiwari 10.59350/wh60e-4g784 2017‑12‑27

https://github.com/apache-spark-on-k8s/kubernetes-HDFS
https://github.com/hortonworks/kubernetes-yarn
https://streaml.io/blog/heron-on-kubernetes/
https://doi.org/10.59350/wh60e-4g784


Kubernetes for Big Data Workloads 6

Figure 4: Heron on Kubernetes. Image credits Streamlio.

Storage provisioning

Storage options have been another big roadblock in porting data workloads on Kubernetes particu‑
larly for stateful data workloads like Zookeeper, Cassandra, etc. But Kubernetes storage is evolving
quite quickly. Recent Kubernetes updates provides extensive storage automation capabilities and
options,

• automatically attach and detach storage, format disk, mount and unmount volumes per the
pod spec so that pods canmove seamlessly between nodes18.

• direct access to raw block storage19 without the abstraction of a filesystem for workloads that
require consistent I/O performance and low latency.

• topology‑aware volume scheduling20 i.e. now a pod can influence where it is scheduled based
on the availability of storage like must have local SSD storage.

18Dynamic Storage Provisioning
19Raw Block Consumption in Kubernetes
20Volume Topology‑aware Scheduling

Abhishek Tiwari 10.59350/wh60e-4g784 2017‑12‑27

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#dynamic
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/storage/raw-block-pv.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/storage/volume-topology-scheduling.md
https://doi.org/10.59350/wh60e-4g784


Kubernetes for Big Data Workloads 7

• ability to increase the size of persistent volume21 after it has been provisionedwhile supporting
various scenarios such as online/offline with data/without data.

• general availability of the StatefulSets2223 to manage pods with the state i..e. pods are created
from the same spec, but they are unique hence not interchangeable

These new Kubernetes storage options have enabled us to deploy more fault‑tolerance stateful data
workloads on Kubernetes without the risk of data loss. For instance, by levering PersistentVolumes,
a custom Cassandra Seed Provider, and StatefulSets we can provide a resilient installation of Cassan‑
dra24.

Figure 5: Scalable and resilient multi‑node Cassandra deployment on Kubernetes Cluster using
PersistentVolume and StatefulSets. Image credits IBM.

Final thoughts

In this article, we covered several new developments required to productionize big data workloads
on Kubernetes. In particular, we discussed custom schedulers and storage options to port existing
21Growing Persistent Volume size
22StatefulSets
23Fault Tolerant Stateful Services on Kubernetes
24Deploying Cassandra with Stateful Sets

Abhishek Tiwari 10.59350/wh60e-4g784 2017‑12‑27

https://github.com/kubernetes/community/blob/master/contributors/design-proposals/storage/grow-volume-size.md
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://2017.bigdatawisconsin.org/wp-content/uploads/sites/3/2017/09/Fault-Tolerant-Stateful-Services-on-Kubernetes.pdf
https://kubernetes.io/docs/tutorials/stateful-application/cassandra/
https://doi.org/10.59350/wh60e-4g784


Kubernetes for Big Data Workloads 8

big data frameworks on Kubernetes. These changes will have a big impact in 2018 and I anticipate
Kubernetes will become defacto scheduler for big data workloads by effectively replacing YARN and
Mesos. Lastly, I also think there is definitely a place for newKubernetes native big data frameworks.

Abhishek Tiwari 10.59350/wh60e-4g784 2017‑12‑27

https://doi.org/10.59350/wh60e-4g784

	Benefits
	Key challenges
	Performance
	Native frameworks
	Custom schedulers
	Storage provisioning
	Final thoughts

