
Kubernetes is the right place for
serverless

Abhishek Tiwari
 

 

Citation: A. Tiwari, ”Kubernetes is the right place for serverless”, Abhishek
Tiwari, 2017. doi:10.59350/kmqs7-bjw36

Published on: January 20, 2017

https://orcid.org/0000-0003-2222-2395
https://doi.org/10.59350/kmqs7-bjw36


Kubernetes is the right place for serverless 1

Function as a Service (FaaS) remains at the core of the serverless movement. That said, most of prac‑
tical serverless implementations I have seen use a combination of serverless functions andmore con‑
ventional microservices running in containers. Instead of a one‑size‑fits‑all approach, i.e. trying to
use serverless function for everything, a balanced approach is highly recommended. To a large ex‑
tent, Kubernetes is best placed to bring serverless functions and conventionalmicroservices together
seamlessly.

At the beginning, there was only one FaaS implementation available for Kubernetes ‑ Funktion. Funk‑
tion introduced event driven lambda style programmingmodel on top of Kubernetes but not without
limitations. However, recently several serverless frameworks introduced support for running func‑
tions on Kubernetes including but not limited to IronFunctions and Fission.

Fission is a serverless framework for Kuberneteswith focus ondeveloper productivity andhighperfor‑
mance. Fission maintains a fleet of warm containers with dynamic loader waiting to load functions
which makes Fission fast. With Fission, typical cold‑start latencies are in 100 millisecond range. As
Fission runs on Kubernetes, existing logging and monitoring for Kubernetes pods can be used which
makes it ops friendly.

Figure 1: Just write functions, andmap them to Fission routes. Image Credits Fission.io

Moreover, Fission abstracts away containers by default ‑ no containers to build, and no container reg‑
istries to manage. Developer just need to write short lived functions in the language of their choice,
and map them to Fission router. You can map a HTTP request, a webhook or an event trigger to your
route in order to invokes your function. Fission takes care of the rest: deployment, routing, scalability,
availability.

$ cat hello.js
module.exports = function(context, callback) {

callback(200, "Hello, world!\n");
}

$ fission function create --name hello --env nodejs --code hello.js

$ fission route add --function hello --url /hello

Abhishek Tiwari 10.59350/kmqs7-bjw36 2017‑01‑20

https://github.com/funktionio/funktion
https://github.com/iron-io/functions
https://github.com/fission/fission
http://fission.io/
https://doi.org/10.59350/kmqs7-bjw36


Kubernetes is the right place for serverless 2

$ curl http://router.fission/hello
Hello, world!

At this stage both, IronFunction and Fission, are yet to be production ready. That said, I am more
excited about seamless possibilities where both conventionalmicroservices and serverless functions
will run on same container infrastructure. This will offer better interoperability, seamless integration
and lower latencies. And all of that without dealing with a vendor specific function flavour.

Abhishek Tiwari 10.59350/kmqs7-bjw36 2017‑01‑20

https://doi.org/10.59350/kmqs7-bjw36

