
Kubernetes on AWS: What you need
to know andwhy

Abhishek Tiwari
 

 

Citation: A. Tiwari, ”Kubernetes on AWS: What you need to know and why”,
Abhishek Tiwari, 2017. doi:10.59350/7f459-80h39

Published on: February 06, 2017

https://orcid.org/0000-0003-2222-2395
https://doi.org/10.59350/7f459-80h39


Kubernetes on AWS: What you need to know and why 1

Setting and running Kubernetes on Amazon Web Services (AWS) is a very involved process. AWS has
decided to not implement Kubernetes as a Service but built something of its own ‑ Amazon EC2 Con‑
tainer Service (ECS). Hence, you need to know and consider a lot of things before you can successfully
roll out Kubernetes on AWS. These are the consideration which canmake or break it your Kubernetes
rollout.

Why Kubernetes

Oftenpeople askmewhyKubernetes on AWSandwhy not just use the ECS.Well here is a list of reason
why you should use Kubernetes on AWS and not ECS.

Open source, no vendor lock‑in

Kubernetese is an open‑source project supported by a large number of public cloud providers includ‑
ing Google, Microsoft, and IBM. So there is no fear of vendor lock‑in. In fact, you can run your work‑
loads acrossmultiple cloud providers all the time. You can alsomigrate your applications running on
Kubernetes from one vendor to another without any disruptions.

Portable, general purpose

Kubernetes runs everywhere inpublic cloud, private cloud, baremetal, laptop, etc. It offers consistent
behavior so that applications are portable. I am yet to see a local development version for ECS. In
addition, Kubernetes is general purpose and it can run a variety of workloads including stateless and
stateful, microservices andmonoliths, services and batch, greenfield and legacy.

Extensible, state of the art

Kubernetes is highly extensible and allows you to integrate it into your environment. You can choose
different container run times (Docker vs. rkt). Based on requirements, you can choose from a range
of networkingmodels including Flannel, Project Calico, Open Virtual Networking, Weave Net, etc. Ku‑
bernetese’s IP per Pod networking model is nothing less than genius.

Cloudbursting, sensitive workloads

With Kubernetese you can run workloads in your on‑premise clusters, but automatically “overflow”
to your cloud‑hosted clusters whenever additional capacity is required. Moreover, you can run your

Abhishek Tiwari 10.59350/7f459-80h39 2017‑02‑06

https://doi.org/10.59350/7f459-80h39


Kubernetes on AWS: What you need to know and why 2

normal workloads in your preferred cloud‑hosted clusters, but divert your sensitive workloads to run
in secure, on‑premise clusters.

As somepeople have alreadynoted, ECS is a burdenanddrag for AWS. The valueof ECS for enterprises
viewing containers as a hybrid cloud deployment architecture is less clear especially when compared
to Kubernetese and open source PaaS systems are Red Hat’s OpenShift and Pivotal’s Cloud Foundry.
I could not agree more.

Cluster Architecture

A Kubernetes cluster contains a range of Kubernetes nodes (AKA workers or minions) and a cluster
control plane (AKAmaster). Kubertnetesnodes ina cluster are themachines (physical serversor cloud
servers) and they run your application as pods.

Figure 1: Kubernetes Cluster Architecture

Abhishek Tiwari 10.59350/7f459-80h39 2017‑02‑06

https://www.theregister.co.uk/2017/02/28/kubernetes_aws_great_undoing/
https://doi.org/10.59350/7f459-80h39


Kubernetes on AWS: What you need to know and why 3

Control Plane

Kubernetese control plane has following key components ‑ API server, Distributed watchable stor‑
age, Scheduler, Controller manager Server. These components can be co‑located or spread across
machines as dictated by cluster size or high‑availability requirements of the cluster. Cluster state is
backed by a distributed watchable storage system (etcd). At a minimum to keep control plan state‑
less, etcd should be running on dedicated servers. This will allow other components to auto‑scale
using an EC2 auto scaling group.

Nodes

A Kubernetes node requires following services in order to run Pods and be managed by Kubernetes
control plane: Kubelet, Container runtime, Kube Proxy. A Pod encapsulates one or more application
containers, optional storage volume, auniquenetwork IP, andoptions that dictate how the containers
should run. A Kubernetes node can be a Linux node orWindows Server node. Thismeans Kubernetes
control plane continue to run on Linux, while the Kubelet and Kube‑proxy can be run on Windows
Server. This is a perfect situation for the organizations with mix workload across Linux and Windows
Server.

Kubelet

The kubelet is an agent that runs on each Kubernetes node. The cluster control plane interacts with
Pods using Kubelet. Kubelet implements Pod and Node APIs that drive the container execution
layer.

Container runtime Each node runs a container runtime, which is responsible for downloading im‑
ages and running containers. The latest version of Kubernetese supports Docker and rkt as container
runtime. Kubelet communicates with Container Runtime Interface (CRI) ‑ a plugin interface which
enables kubelet to use a wide variety of container runtimes, without the need to recompile. In ad‑
dition, starting from Kubernetes version 1.5 support for Windows Server containers is available. For
Windows, Kubernetes can orchestrate Windows Server Containers and Hyper‑V Containers.

Abhishek Tiwari 10.59350/7f459-80h39 2017‑02‑06

https://doi.org/10.59350/7f459-80h39


Kubernetes on AWS: What you need to know and why 4

Figure 2: Kubelet communicates with CRI over Unix sockets using the gRPC framework, where
kubelet acts as a client and the CRI as the server.

Kube Proxy Each node runs a Kube proxy process and can do simple TCP, UDP stream forwarding
or round robin TCP, UDP forwarding across a set of backends (pods).

High availability

You have to consider high‑availability not just for nodes but also control plane. Kubernetes provides
two different strategies for high availability:

• Run a single cluster inmultiple cloud zones, with redundant components such asmaster,etcd,
worker (ideal for multi‑AZ high‑availability)

• Runmultiple independent clusters and combine them behind one management plane: federa‑
tion (ideal for multi‑region or multi‑cloud high‑availability)

Cluster Federation

For most workloads single cluster spanning across multiple cloud zones in one cloud region would
be sufficient. That said, it is worth considering either amulti‑region ormulti‑cloud deployment using
cluster federation. You can also federate multiple single cloud zone cluster in a given cloud region.
Kubernetese recommends this approach and it works seamlessly if you have a multi‑region or multi‑
cloud strategy in place.

Abhishek Tiwari 10.59350/7f459-80h39 2017‑02‑06

https://doi.org/10.59350/7f459-80h39


Kubernetes on AWS: What you need to know and why 5

Figure 3: Kubernetese cluster federation for high‑avaialbility

Cluster Setup

Once you have a good understanding of cluster architecture based on your requirements, you can
move on to the cluster provisioning and configuration part. Here you have two options: 1) bootstrap
the Kubernetes cluster from scratch or the hard way, or 2) use Kubernetes cluster provisioning tool

Abhishek Tiwari 10.59350/7f459-80h39 2017‑02‑06

https://opencredo.com/kubernetes-aws-terraform-ansible-1/
https://github.com/kelseyhightower/kubernetes-the-hard-way
https://doi.org/10.59350/7f459-80h39


Kubernetes on AWS: What you need to know and why 6

such as kops or kube‑aws.

Bootstrapping the Kubernetes cluster is helpful if you trying to learn in and outs of the Kubernetes
platform and you are interested in understanding how everything fits together. Otherwise, tools like
kops (also known as Kubernetes Operations) or kube‑aws are more than sufficient to setup the pro‑
duction grade Kubernetes cluster. There is another tool Kubernetes on AWS which seems promising
as it overcomes some of the drawbacks of the kube-aws but still not ready for production deploy‑
ments.

When selecting between kops and kube-aws, it is important to consider following factors,

• component basedhigh‑availability for theKubernetes cluster (spreadmaster, worker andetcd
across multiple availability zone)

• support for the cluster federation and federation based high‑availability setup using multiple
Kubernetes clusters

• separation or collocation of master and etcd (ideally we want to run etcd separately from
master, so that master is stateless)

• ability to auto‑scale the worker (akaminion) nodes as well as master nodes (stateless) depend‑
ing utilization and resource availability

• ability to customize infrastructure ‑ VPC, subnets, private/public subnets, instance type, tagging,
the number of workers, spot instances, etc.

• support for different networking and DNS options and their integration with AWS networking
options and Route 53.

• ability to store the state of cluster and the representation of cluster
• option toupgradeacluster,managecluster add‑ons, reconfigure thecomponentsand instances
• streamlined workflow for backing up etcd and restoring the etcd from backup

Based on all of above factors, kopswill be a more logical choice.

Networking

Kubernetes networkingmodel supports one IP per pod. Pods in the cluster can be addressed by their
IP. All containers within a pod behave as if they are on the same host with regard to networking.

CNI

Kubernetes uses Container Networking Interface (CNI) plug‑ins to orchestrate networking. Every time
a POD is initialized or removed, container runtime invokes the CNI plugin.

Abhishek Tiwari 10.59350/7f459-80h39 2017‑02‑06

https://github.com/kubernetes/kops/blob/master/docs/aws.md
https://github.com/coreos/kube-aws
https://github.com/kubernetes/kops/blob/master/docs/aws.md
https://coreos.com/kubernetes/docs/latest/kubernetes-on-aws.html
https://github.com/zalando-incubator/kubernetes-on-aws
https://doi.org/10.59350/7f459-80h39


Kubernetes on AWS: What you need to know and why 7

DNS

DNS is a built‑in service launched automatically by the addonmanager using kube-dns cluster add‑
on. Basically,kube-dns schedulesDNSPods andService on the cluster, other pods in the cluster can
use the DNS Service’s IP to resolve DNS names. If you are in AWS it makes more sense to use Amazon
Route 53 as external DNS. This can be achieved by synchronizing Kubernetes Services with Amazon
Route 53 as describe here and here.

Certificates

Kube‑Legobrings fully automatedTLSmanagement toaKubernetes cluster. It automatically requests
certificates for Kubernetes Ingress resources fromLet’s Encrypt ‑ on AWSonlyNginx Ingress Controller
is supported. Anotheroption is touseKubernetesCertificateManagerwhichcanmanageLet’sEncrypt
certificates for a Kubernetes cluster.

IAM Permissions

At this stage, Kubernetese is not native the AWS IAM roles and permissions. Hence you need to give a
special consideration to how you want to provide IAM permissions to your nodes, pods, and contain‑
ers. Obviously, you can assign a global IAM role to a Kubernetes node which is the union of all IAM
roles required by all containers and pods running in the Kubernetes cluster. From a security stand‑
point, this is not an acceptable solution because a global IAM role can be inherited by all pods and
containers running in the cluster. Hence, you will require a more granular approach which enables
assignment of IAM roles at pod and container level and not node level.

Luckily, Kube2iam offers a clean solution for this problem. It provides credentials to containers run‑
ning inside a Kubernetes cluster based on role annotations. You will need to run Kube2iam container
as a daemonset so that it runs on each Kubernetes node. All requests to EC2 metadata API from
containers are proxied via Kube2iam container. It is important to note that Kube2iam will use the
in‑cluster method to connect to the Kubernetes master and retrieve the role for the container using
the iam.amazonaws.com/role annotation. Finally, Kube2iam container makes a call to the EC2
metadata API by assuming container role to retrieve temporary credentials behalf of the container
and returns credentials to the caller.

Abhishek Tiwari 10.59350/7f459-80h39 2017‑02‑06

https://github.com/wearemolecule/route53-kubernetes
https://github.com/antonosmond/k8s-route53
https://github.com/jetstack/kube-lego
https://github.com/kelseyhightower/kube-cert-manager
https://github.com/jtblin/kube2iam
https://doi.org/10.59350/7f459-80h39


Kubernetes on AWS: What you need to know and why 8

Figure 4: kube2iam provides different AWS IAM roles for pods running on Kubernetes

Please ensure that your developers are not hard coding IAM access tokens into application. This is anti‑
pattern and should be avoided at any cost. Only IAM roles should be pushed to the code repository.

Developer Workflow

A typical end‑to‑end developer workflow normally involves 1) a local development environment, 2)
one or more container repositories, 3) a continuous integration tool, 4) a continuous delivery tool.

Local Development Environment

Following image illustrates the local development environment for Kubernetes. This setup is not spe‑
cific to AWS and can be used with any cloud provider. You basically require Minikube, Kubectl, and
Docker toolkit installed on your laptop or development machine along with a version control system
such as Git.

Abhishek Tiwari 10.59350/7f459-80h39 2017‑02‑06

https://doi.org/10.59350/7f459-80h39


Kubernetes on AWS: What you need to know and why 9

Figure 5: An overview of local development environment.

Minikube For developing applications against Kubernetes one should ideally use minikube.
Minikube is used in conjunction of Kubectl (see details in next section). Minikube enables you to run
Kubernetese without much hassle. Basically, Minikube runs a single‑node Kubernetes cluster inside
a VM on your laptop on top of Virtualbox or VMWare Fusion driver. Minikube provides access to most
of the Kubernetese components optimized for local development. As you are intending to deploy
your application in AWS based Kubernetese cluster, IAM roles will not work with Minikube hence you
should use AWS access keys for local development and testing.

Moreover, Minikube also provides several built‑in add‑ons that can be used enabled, disabled, and
opened inside of the local Kubernetese environment. Some of the add‑ons are quintessential and
enabled by default (i.e.dashboard), others you have to enable such asregistry-creds,kube-
dns, ingress, etc. Add0‑on registry-creds allows you to pull to private docker images stored
in Amazon’s EC2 Container Registry (ECR) to your local Kubernetes cluster. Similarly, ingress add‑
on gives you the ability to provision Nginx ingress controller locally. In addition, you can always pull
public images from Docker Hub without authentication.

Please ensure that your developers are not pushing Docker images built locally to ECR. This is anti‑
pattern and should be avoided at any cost. Images required forUATandProduction should be created
by a continuous integration system and pushed to ECR.

Kubectl Kubectl is a command line interface for Kubernetes which enable developers and system
administrators to run commands against Kubernetes clusters (local cluster as well as the remote clus‑

Abhishek Tiwari 10.59350/7f459-80h39 2017‑02‑06

https://github.com/kubernetes/minikube
https://doi.org/10.59350/7f459-80h39


Kubernetes on AWS: What you need to know and why 10

ter). Kubectl interacts with your cluster via API Server endpoints. Before you start issuing the com‑
mands to your cluster, you will need to authenticate against to your cluster’s identity provider. API
server supports several authentication strategies including client certificates, bearer tokens, an au‑
thenticating proxy, or HTTP basic auth. Using Kubectl you can run configuration commands forset-
cluster, set-credentials, set-context. Once you are configured, you can switch between
multiple clusters by running use-context.

kubectl config set-cluster default-cluster --server=https://${MASTER_HOST}
--certificate-authority=${CA_CERT}

kubectl config set-credentials default-admin --certificate-authority=${
CA_CERT} --client-key=${ADMIN_KEY} --client-certificate=${ADMIN_CERT}

kubectl config set-context default-system --cluster=default-cluster --user
=default-admin

kubectl config use-context default-system

Container repository

You will certainly need a Docker container registry to store, manage, and deploy your private Docker
container images to Kubernetes. As we are deploying our Kubernetes cluster on AWS, it makes sense
to use ECR. In ECR, you should create a separate ECR repository for each Docker image. In Pod or
deployment definition files, we can specify an ECR image using ACCOUNT.dkr.ecr.REGION.
amazonaws.com/myimagename:tag. Normally you want to use latest tag when pushing or
pulling images to or from your ECR repository.

As discussed above, forMinikube you should useregistry-creds add‑onwhich allows you topull
to private docker images stored in ECR to your local Kubernetes cluster.

Kubernetes has native support for ECR, when nodes are AWS EC2 instances. In deployment mode,
ECR images are fetched by kubelet and it periodically refreshed using ECR credentials. This means
kubelet will require appropriate permissions to periodically refresh the ECR credentials.

Continuous integration

Assuming you have created an ECR Repository in your AWS account, Docker runtime along with ap‑
propriate Jenkins plugins (Pipeline plugin, Docker Pipeline plugin, Amazon ECRplugin) is installed on
Jenkins server, I suggest using Jenkins Pipeline to build Docker images and push them to your ECR
(see example Groovy code below).

node {
stage 'Checkout'
git 'ssh://git@github.com:mygithubid/myapp.git'

Abhishek Tiwari 10.59350/7f459-80h39 2017‑02‑06

https://kubernetes.io/docs/concepts/containers/images/#using-aws-ec2-container-registry
https://doi.org/10.59350/7f459-80h39


Kubernetes on AWS: What you need to know and why 11

stage 'Docker build'
docker.build('myapp')

stage 'Docker push'
docker.withRegistry('https://ACCOUNT.dkr.ecr.REGION.amazonaws.com', 'ecr

:REGION:my-ecr-credentials') {
docker.image('myapp').push('latest')

}
}

Abhishek Tiwari 10.59350/7f459-80h39 2017‑02‑06

https://doi.org/10.59350/7f459-80h39

	Why Kubernetes
	Open source, no vendor lock-in
	Portable, general purpose
	Extensible, state of the art
	Cloudbursting, sensitive workloads

	Cluster Architecture
	Control Plane
	Nodes
	Kubelet

	High availability
	Cluster Federation

	Cluster Setup
	Networking
	CNI
	DNS
	Certificates

	IAM Permissions
	Developer Workflow
	Local Development Environment
	Container repository
	Continuous integration


