
Local Development Environment for
Kubernetes using Minikube

Abhishek Tiwari

Citation: A. Tiwari, ”Local Development Environment for Kubernetes using
Minikube”, Abhishek Tiwari, 2017. doi:10.59350/y1zm7-nfg23

Published on: September 10, 2017

https://orcid.org/0000-0003-2222-2395
https://doi.org/10.59350/y1zm7-nfg23

Local Development Environment for Kubernetes using Minikube 1

Kubernetes can be an ultimate local development environment particularly if you are wrangling with
a large number of microservices. In this post, we will cover how you can create a local development
workflow using Minikube and tools such as Make to iterate fast without the wait imposed by your
continuous integration pipeline. With this workflow, you can code and test changes immediately.

Traditionally, you can test your code changes by rebuilding the Docker images (either locally or via
your continuous integrationpipeline), thenpushing the image to aDocker registry after the successful
build, and then redeploy to your Kubernetes cluster.

Overall development workflow

Here is our simplified development workflow,

1. Make changes in your code on your local laptop
2. Build local Docker images and deploy them to Minikube
3. Test your code changes after deploying into Minikube
4. If changes are good, commit them to version control repository
5. Your version control system triggers continuous integration pipeline
6. Continuous integration builds Docker images and push it your registry

We are mainly interested in the fast iteration of step 1‑3. In later sections, we will discuss howwe can
streamline step 1‑3 using GNUMake and other tools. ## Prerequisite Before we get started, let’s have
a look at various dependencies you need to install in order to make this workflow work for you.

Docker

As we are dealing with Docker images, I assume you have downloaded and installed Docker for your
operating system. I use Docker for Mac.

VirtualBox

You will require VirtualBox (or a similar VM driver such as xhyve driver or VMware Fusion depending
on your operating system) which enables Minikube to run a single‑node Kubernetes cluster inside a
VM. Somake sure you have downloaded VirtualBox and installed it.

Kubectl

Kubectl is a command line utility (CLI) for running commands against Kubernetes clusters. You need
kubectl to interact with your local Kubernetese cluster (i.e. Minikube) as well as remote clusters.

Abhishek Tiwari 10.59350/y1zm7-nfg23 2017‑09‑10

https://docs.docker.com/docker-for-mac/install/
https://www.virtualbox.org/wiki/Downloads
https://doi.org/10.59350/y1zm7-nfg23

Local Development Environment for Kubernetes using Minikube 2

On Mac, you can install Kubectl using one of the following methods,

• Using the Google Cloud SDK: gcloud components install kubectl
• Using Homebrew packagemanager: brew install kubectl

For other operating systems please see detailed documentation on how to install kubectl.

Kubectl Basics There are some basic kubectl commands and concepts you should get familiar
with.

Using kubectl you can interact with various Kubernetes clusters by setting an appropriate context.
Typically a kubeconfig file is used to configure access to one or more clusters and include details re‑
quired for a context. OnMac, this can be found at~/.kube/config. Formore details please review
this page on how to configure access to multiple clusters by using configuration files.

kubectl cluster-info
kubectl config --kubeconfig=config view
kubectl config use-context minikube
kubectl config --kubeconfig=config set-context minikube --cluster=minikube
kubectl config --help

Using kubectl you can interact with namespaces.Namespaces are virtual clusters and typically used
to isolate projects deployed on Kubernetes cluster.

kubectl get namespace
kubectl create namespace dev

When interacting with different namespaces, you can set temporary namespace,

kubectl -n dev get pods

Or permanently for all subsequent kubectl commands in that context, ~~~ kubectl config set‑context
$(kubectl config current‑context) –namespace=dev kubectl get pods ~~~

You can also list and edit pods, deployments, services, ingress, and nodes.

kubectl get pods
kubectl get deployments
kubectl get services
kubectl get ingress
kubectl get nodes

Minikube

Depending on your operating system, you should download and install appropriate Minikube bina‑
ries.

Abhishek Tiwari 10.59350/y1zm7-nfg23 2017‑09‑10

https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/access-application-cluster/configure-access-multiple-clusters/
https://github.com/kubernetes/minikube
https://doi.org/10.59350/y1zm7-nfg23

Local Development Environment for Kubernetes using Minikube 3

On Mac, you can install latest stable version of Minikube using Homebrew,

brew cask install minikube

Alternatively, you can run the following command from your Mac terminal and it will install a specific
version (v0.24.1) of Minikube.

curl -Lo minikube https://storage.googleapis.com/minikube/releases/v0
.24.1/minikube-darwin-amd64 && chmod +x minikube && sudo mv minikube /
usr/local/bin/

Minikube Basics Starting the Minikube will create a single‑node Kubernetes cluster inside a VM.
Minikube start command also createsminikube context and set it as default.

minikube start
minikube status

Kubernetes dashboard is a web‑based user interface. You can create and modify individual Kuber‑
netes resources from this UI. It also provides information on the state of Kubernetes resources in your
cluster.

Abhishek Tiwari 10.59350/y1zm7-nfg23 2017‑09‑10

https://doi.org/10.59350/y1zm7-nfg23

Local Development Environment for Kubernetes using Minikube 4

Figure 1: Kubernetes dashboard is a general‑purpose web UI for Kubernetes clusters.

By default, Minikube comeswith dashboard add‑on enabled, andwe can access the Kubernetes dash‑
board in the browser by typing following command.

minikube dashboard

Another way to access dashboard is to use kubectl. Run the following command in your terminal:

kubectl proxy

kubectl will handle authentication with API server andmake Dashboard available at http://localhost:
8001/ui.

You can always stop or delete minikube cluster, ~~~ minikube stopminikube delete ~~~

In addition, Minikube provides a range of Kubernetes versions to run. You can print a list of available
versions to use,

minikube get-k8s-versions

Abhishek Tiwari 10.59350/y1zm7-nfg23 2017‑09‑10

http://localhost:8001/ui
http://localhost:8001/ui
https://doi.org/10.59350/y1zm7-nfg23

Local Development Environment for Kubernetes using Minikube 5

Then start Minikube by passing a specific version,

minikube start --kubernetes-version v1.7.0

In addition, you can run Minikube with more customised configurations such as you can specify a
different network plugin than default or use a different virtual machine driver rather than VirtualBox.
You can also change default allocation of memory and CPU.

minikube start --kubernetes-version v1.7.0 \
--extra-config=proxy.IPTables.SyncPeriod.Duration=5000000000 \
--extra-config=proxy.IPTables.MinSyncPeriod.Duration=3000000000 \

These additional start options can be viewed by running,

minikube start --help

Manage Minikube Add Ons Minikube provides a set of built‑in add‑ons and some of them such as
dashboard is enabled by default. These add‑ons that can be enabled, disabled, or opened inside of
the local Kubernetes environment.

minikube addons list

For development purpose, I highly recommend enabling heapster add‑on. Heapster enables multi‑
level monitoring and performance analysis including pods, nodes, and cluster.

Under thehood, it is using InfluxDBas the storagebackend formetricdataandGrafanaasvisualization
UI.

minikube addons enable heapster
minikube addons open heapster

Once enabled we can open Grafana UI (to interact with Heapster) in the browser.

I also highly recommend enabling Ingress functionality for your Minikube,

minikube addons enable ingress

Kubernetes Config Generator

Whenworkingwith Kubernetes, creating andmanaging config files canbe a really tedious job. I highly
recommendkubegen ‑ a toolwhich can simplify yourday‑to‑dayKubernetesworkflow, byautomating
the generation of boilerplate config codes for you and letting you focus on the important things.

Assuming youhaveNode JS andNPMalready installed on your developmentmachine, to install kube‑
gen you need to execute the following command:

Abhishek Tiwari 10.59350/y1zm7-nfg23 2017‑09‑10

https://doi.org/10.59350/y1zm7-nfg23

Local Development Environment for Kubernetes using Minikube 6

npm install -g generator-kubegen

Basically, kubegen is a Yeoman generator. When we run yo kubegen on terminal it ask few ques‑
tions andbasedon your inputs it creates config files such asdeployment.yml (deployment config),
svc.yml (service config), ing.yml (ingress config).

Rapid Development Cycle

Now that we have setup our local Kubernetes development environment lets take it for a ride. We are
going to build a Python applicationmessage-api. This applicationwill be deployed inside our local
Minikube cluster.

Make changes in your code on your local laptop

To start with, we are going to keep this application quite simple. It has

1. A Dockerfile
2. A requirements.txtwith only one dependency flask
3. An app.pywith a list of flask routes and view functions

Now let’s review the content ofDockerfile. Dockerfilehas instructions to install requirements
for the application and run an application server which enables this application to handle HTTP re‑
quest/response on container port 5000.

FROM python:3-alpine

RUN mkdir -p /usr/src/app
WORKDIR /usr/src/app

COPY requirements.txt /usr/src/app/
RUN pip install --no-cache-dir -r requirements.txt

COPY . /usr/src/app

EXPOSE 5000

CMD ["python", "./app.py"]

Our app.py is also quite simple. We just added one flask GET request /api/v1.0/messages
which returns a list of messages.

from flask import Flask, jsonify
app = Flask(__name__)

Abhishek Tiwari 10.59350/y1zm7-nfg23 2017‑09‑10

https://doi.org/10.59350/y1zm7-nfg23

Local Development Environment for Kubernetes using Minikube 7

messages = [
{

'id': 1,
'message': u'Hello World',

},
{

'id': 2,
'message': u'Hello Docker',

},
]

@app.route('/api/v1.0/messages', methods=['GET'])
def get_tasks():

return jsonify({'messages': messages})

if __name__ == '__main__':
app.run(host='0.0.0.0')

Build local Docker images and deploy them to Minikube

A. Build Docker image message-api against the minikube

eval $(minikube docker-env)
docker build -t message-api:v1 .

Please note that eval $(minikube docker-env) enables us to interact and build against
docker daemon inside the minikube VM.

B. Create a deployment message-api

kubectl run hello-python --image=message-api:v1 --port=5000

C. Expose deployment message-api as service

kubectl expose deployment hello-python --type=NodePort
kubectl get services

As you can see, everytime you make changes in your code you still have to repeat few things: build
a new Docker images (Step‑A) and then update our deployment to use updated Docker image (Step‑
D).

D. Update the deployment to use updated Docker image

kubectl set image deployment/message-api *=message-api:v1

To avoid this repetition we are going to add a Makefile in our project folder. In this Makefilewe
will add an update command which basically allows us to automate step‑A and step‑D.

Abhishek Tiwari 10.59350/y1zm7-nfg23 2017‑09‑10

https://doi.org/10.59350/y1zm7-nfg23

Local Development Environment for Kubernetes using Minikube 8

.PHONY: update
update:

@eval $$(minikube docker-env) ;\
docker image build -t message-api:v1 -f Dockerfile .
kubectl set image deployment/message-api *=message-api:v1

Now all we need is to run make update command after every code change and we will see update
results in Minikube.

Test your code changes after deploying into Minikube

Open or get URL for service message-api so we can validate the changes,

minikube service hello-python
minikube service --url hello-python

Figure 2: If we hit the service URL in the browser with path /api/v1.0/messageswe will
something like following.

Abhishek Tiwari 10.59350/y1zm7-nfg23 2017‑09‑10

https://doi.org/10.59350/y1zm7-nfg23

Local Development Environment for Kubernetes using Minikube 9

Myworkflow

I generally use a more evolved version of workflow described in the previous section. Using kubegen
I create Kubernetes YAML files for deployment, service and ingress resources.

Figure 3: yo kubegen starts a full Kubernetes file generation wizard. All generated files are stored in
a new local folder.

I use config files generated by kubegen in my configurable Makefile. On header section of the file,
you can change the name of the repo (used for naming image, deployment, service, and ingress).
You can edit namespace and path of config files along with version strings. You can an view exam‑
ple Makefile snippet below. As you can see, there are a few new make commands to streamline
my Kubernetes development workflow,

• make create builds the local image, then uses that image to create a deployment which is
exposed as service.

• make ingress creates an ingress using the config files specified in the header section
(IFILE)

• make update creates a time stamped version of the image andupdate the deployment to use
this new image

REPO=message-api
TIMESTAMP=tmp-$(shell date +%s)
NSPACE=dev
DFILE=message-api/deployment.yml
SFILE=message-api/svc.yml

Abhishek Tiwari 10.59350/y1zm7-nfg23 2017‑09‑10

https://doi.org/10.59350/y1zm7-nfg23

Local Development Environment for Kubernetes using Minikube 10

IFILE=message-api/ing.yml
VERSION=v1

.PHONY: update
update:

@eval $$(minikube docker-env) ;\
docker image build -t $(REPO):$(TIMESTAMP) -f Dockerfile .
kubectl set image -n $(NSPACE) deployment/$(REPO) *=$(REPO):$(

TIMESTAMP)

.PHONY: delete
delete:

kubectl delete -n $(NSPACE) deployment,service $(REPO)

.PHONY: create
create:

@eval $$(minikube docker-env) ;\
docker image build -t $(REPO):v1 -f Dockerfile .
kubectl create -f $(DFILE)
kubectl create -f $(SFILE)

.PHONY: ingress
ingress:

kubectl create -f $(IFILE)

.PHONY: push
push: build

docker tag $(REPO):$(VERSION) $(REPO):latest
docker push $(REPO):$(VERSION)
docker push $(REPO):latest

build:
@eval $$(minikube docker-env -u);\
docker image build -t $(REPO):$(VERSION) -f Dockerfile .

The big picture

In this post, wemainly focused on the local development environment using Minikube. As illustrated
below this is a part of the bigger picture i.e. overall end‑to‑end workflow. In upcoming posts, we will
cover other toolswith the potential to fast‑track development activities utilizingKubernetes cluster.

Abhishek Tiwari 10.59350/y1zm7-nfg23 2017‑09‑10

https://doi.org/10.59350/y1zm7-nfg23

Local Development Environment for Kubernetes using Minikube 11

Figure 4: An overview of local development environment.

Abhishek Tiwari 10.59350/y1zm7-nfg23 2017‑09‑10

https://doi.org/10.59350/y1zm7-nfg23

	Overall development workflow
	Docker
	VirtualBox
	Kubectl
	Minikube
	Kubernetes Config Generator

	Rapid Development Cycle
	Make changes in your code on your local laptop
	Build local Docker images and deploy them to Minikube
	Test your code changes after deploying into Minikube

	My workflow
	The big picture

