Microservice Architecture of Alibaba

Abhishek Tiwari

Citation: A. Tiwari, ”Microservice Architecture of Alibaba”, Abhishek Tiwari,
2024. doi:10.59350/4fttv-pt832

Published on: December 22,2024

https://orcid.org/0000-0003-2222-2395
https://doi.org/10.59350/4fttv-pt832

Microservice Architecture of Alibaba 1

Alibaba has built a complex system of microservices to support its large user base and manage its
diverse business operations. This article explores key learning from Alibaba’s microservices archi-
tecture, presenting critical observations from its design, scalability, performance optimisation, and
resource allocation model. The article draws from research published by Luo et al., which charac-
terises the structural properties of call graphs within Alibaba’s large-scale microservices ecosystem,
uncovering several graph-based properties and insights (see [1] and [2]).

Hyperscale

Alibaba’s microservices ecosystem operates at an unprecedented scale. The Alibaba System Infras-
tructure (ASI) supports over 10 million cores across 50 large-scale clusters, hosting approximately
100,000 business pods. These clusters serve diverse workloads, from real-time streaming and
e-commerce to complex machine-learning tasks. During the Double 11 Shopping Festival in 2020,
Alibaba’s system managed a peak of 580,000 transactions per second, a 1,400% increase compared
to ten years earlier. This scale shows how strong and flexible Alibaba’s microservices model is. These
systems can handle changes in demand throughout the day and during special events. For instance,
backend services can see up to ten times more queries during busy times compared to quieter
periods.

Anatomy of Microservice Call Graphs

A call graph represents the interactions and dependencies between different microservices within a
system (see [3]). It maps the sequence of calls one service makes to others, capturing upstream and
downstream interactions. This structure allows developers and system architects to analyse the data
flow, discover performance bottlenecks, and optimise resource allocation.

Abhishek Tiwari 10.59350/4fttv-pt832 2024-12-22

https://doi.org/10.59350/4fttv-pt832

Microservice Architecture of Alibaba 2

O Service

—> Service call

putX putY putZ

deleteY deletez

getX getY getZ

Figure 1: An example of service call graph

The following illustrates how Alibaba classifies its microservices into stateless and stateful categories.
Stateless services operate independently of state data, while stateful services, like databases and
Memcached, store and manage data. Stateful services usually offer a few uniform interfaces, such
as reading or writing data, whereas stateless services provide numerous evolving interfaces. Com-
munication between microservices follows three paradigms: inter-process communication (IPC), re-
mote invocation, and indirect communication. IPC typically occurs between stateless and stateful
services. Remote invocation, such as Remote Procedure Call (RPC), involves two-way communica-
tion where downstream services return results to upstream services. Indirect communication, like
Message Queue (MQ), enables one-way messaging, where a third entity stores messages for reliabil-
ity, and downstream services retrieve them as needed without a reply. While remote invocation of-
fers high efficiency, indirect communication provides greater flexibility for managing asynchronous
tasks.

Abhishek Tiwari 10.59350/4fttv-pt832 2024-12-22

https://doi.org/10.59350/4fttv-pt832

Microservice Architecture of Alibaba 3

Web | Request

(O Stateless service

Stateful service
() Database

() Memcached

«—= |PC
<=+ RPC
— MQ

Figure 2: Call graph components of Alibaba’s microservices ecosystem. Image credits Luo et al.

In the context of Alibaba’s ecosystem, call graphs provide crucial insights into the inner workings of
thousands of microservices, enabling the company to ensure efficiency and reliability at scale. These
graphs exhibit several distinct features and highlight the unique challenges Alibaba’s microservices
ecosystem faces.

Heavy-Tail Distribution

About 10% of call graphs include more than 40 unique microservices; some even have over 1,500 ser-
vices, which shows how complex Alibaba’s service connections can be. Larger graphs often include
numerous Memcached components, which expedite data retrieval for frequently accessed informa-
tion, further optimising performance.

Abhishek Tiwari 10.59350/4fttv-pt832 2024-12-22

https://doi.org/10.59350/4fttv-pt832

Microservice Architecture of Alibaba 4

Tree-Like Structures

Alibaba’s microservice graphs tend to branch out rapidly, resembling tree-like structures. For example,
stateless microservices frequently initiate a cascade of calls to downstream services, often ending
with stateful components such as databases or caches. This tree-like branching facilitates parallel
processing and serves requests more efficiently.

Dynamic Topologies

The same services can show multiple topological variants based on runtime conditions, making re-
source management and performance optimisation tasks harder. For example, a single service may
transition between nine classes of topologies depending on user requests, seasonal trends, or opera-
tional scenarios.

Hotspot Services

Approximately 5% of microservices handle over 90% of invocations, so they are deemed critical for
performance and resource allocation. These services are dubbed hotspots, such as payment process-
ing and user authentication services. Such microservices provide functions that many online services
need and address cross-cutting concerns.

Critical Path Complexity

Some services have up to 70,000 critical paths, requiring targeted strategies for optimising resource
allocation. The length and variability of these critical paths directly influence end-to-end latency, with
longer paths causing notable performance bottlenecks.

Call Dependency Fluctuations

Call graphs often experience periodic fluctuations due to diurnal user behaviour or business cycles.
For instance, food delivery services peak during meal times, while e-commerce services show surges
during promotional events.

Abhishek Tiwari 10.59350/4fttv-pt832 2024-12-22

https://doi.org/10.59350/4fttv-pt832

Microservice Architecture of Alibaba 5

Key Insights
Application Evolution

Alibaba’s experience highlights significant differences between long-term and short-term developed
applications. Long-term applications optimised over the years exhibit simpler call graph structures
with fewer tiers and a more streamlined design. For example, such applications often provide 12 times
more services than their short-term counterparts while maintaining higher throughput and reduced
latency. By contrast, newer applications often feature deeper and more complex call graphs, with up
to 10 tiers, leading to increased request latency and resource demands.

Microservice Call Rate (MCR)

Alibaba’s microservices handle an exceptionally high number of requests from both upstream services
and users. Call rates exhibit considerable variability, with diurnal and event-driven patterns influenc-
ing traffic loads. For example, services experience up to a tenfold difference in call rates between
peak and off-peak hours. These spikes can reach unprecedented levels during events like the Double
11 Shopping Festival. This variability requires predictive and adaptive strategies, including machine
learning-based forecasting, to ensure resources are available when needed.

Response Time Sensitivity

The sensitivity of microservices to CPU and network resource availability is a critical performance fac-
tor. Even moderate levels of CPU contention can resultin a 20% degradation in response time. Alibaba
mitigates this with fine-grained resource management policies and advanced job schedulers that
spread workloads evenly across hosts. Network optimisation, such as leveraging field-programmable
gate arrays (FPGASs) in Alibaba’s X-Dragon infrastructure, further reduces latency by enhancing data

transmission efficiency.

Resource Utilisation Mismatch

Resource usage across services exhibits distinctive patterns. In Alibaba’s clusters, CPU utilisation fol-
lows a heavy tail distribution: 95% of microservices consume less than 40% CPU utilisation, while a
small number of services consume significantly more. Memory utilisation shows a different pattern—
about 40% of services require more than 80% memory utilisation and can demand more than 60%
heap utilisation.

Abhishek Tiwari 10.59350/4fttv-pt832 2024-12-22

https://doi.org/10.59350/4fttv-pt832

Microservice Architecture of Alibaba 6

Memory Utilisation Stability

Unlike the highly dynamic CPU and network resources, memory usage in Alibaba’s microservices re-
mains relatively stable. This stability is maintained by emphasising Java Virtual Machine (JVM) heap
usage instead of container-level metrics. Alibaba has observed that container memory usage often
exceeds JVM heap usage by approximately 20% due to garbage collection processes. The system min-
imises out-of-memory issues and delivers consistent performance by managing memory through JVM
metrics.

System Memory Util System Net In

..

System CPU Util
_ o
0.70

Il W W”T\HW v ‘
_a T e |-

-0.7

-0.6

W\\ [H\IW
0.4

Il

I F E D B A
I F E D B A

0.2 -

Root App of Microservice Chain

7

-

SN SN IO N TN N T N SN SN NI RN N TN O N N N N S NN IO O NN NN
NN N O S N N N e S Al NN N N S NN R S ol NN N S R e vl
Time

Figure 3: CPU, memory, and network usage fluctuations with time of day. Image credits Xu et al.

Topology-Aware Allocation

Alibaba’s microservice call graphs exhibit significant topological diversity, with the same service some-
times generating multiple distinct graph structures based on runtime conditions. By classifying these
graphs, Alibaba tailors resource provisioning to the specific needs of each topology. This approach
ensures that services with complex or deep call graphs receive the resources necessary to maintain
performance, while simpler graphs allocate resources more conservatively.

Impact of Dynamic Scaling

Dynamic scaling plays an essential role in maintaining runtime performance. Alibaba employs hori-
zontal and vertical scaling techniques to address fluctuating workloads. Horizontal scaling adds addi-
tional containers to handle increased demand, while vertical scaling enhances the capacity of existing
containers. These approaches are supported by Advanced Horizontal Pod Autoscaler (AHPA), which
dynamically adjusts resource allocation based on real-time monitoring data.

Abhishek Tiwari 10.59350/4fttv-pt832 2024-12-22

https://doi.org/10.59350/4fttv-pt832

Microservice Architecture of Alibaba 7

Proactive and Reactive Strategies

Alibaba combines proactive and reactive resource management strategies to address variability and
ensure low latency. Proactive measures include historical data analysis and traffic forecasting to an-
ticipate demand. Reactive strategies, such as burst-aware autoscaling, respond to sudden surges in
traffic, allocating resources in real time to prevent performance degradation. These strategies ensure
that Alibaba’s microservices maintain high availability and responsiveness, even under extreme load
conditions.

Enhanced Network Resource Management

Alibaba improves network performance to avoid slowdowns in communication between services. It
uses advanced message queuing systems to reduce delays in asynchronous tasks. Direct communi-
cation methods like Remote Procedure Calls (RPC) are employed for tasks requiring immediate re-
sponses. Additionally, intelligent load balancing helps evenly distribute network traffic across ser-
vices.

Comparing with Meta

A similar analysis of Meta’s microservices architecture was previously reviewed (see [4]). We find fas-
cinating similarities and differences when we analyse Meta’s and Alibaba’s microservices architec-
tures.

Scale and Service Count

Both companies operate on a massive scale but with notable differences. Meta’s architecture consists
of approximately 18,500 active services, managing over 12 million service instances as of late 2022.
Alibaba’s ecosystem comprises over 20,000 microservices, though their total instance count is not di-
rectly comparable due to different reporting methodologies. Both architectures demonstrate that
production microservices deployments can be orders of magnitude larger than typical benchmarks
or test environments.

Topology Characteristics

Meta’s topology is highly heterogeneous, containing three distinct types of software entities: well-
scoped business services, multi-purpose services deployed as single units, and services that do not

Abhishek Tiwari 10.59350/4fttv-pt832 2024-12-22

https://doi.org/10.59350/4fttv-pt832

Microservice Architecture of Alibaba 8

cleanly fit the microservices paradigm. Alibaba’s topology reveals similar complexity but manifests
differently, with about 5% of services being “hot spots” used by 90% of online services.

While Meta’s services are sparsely interconnected with around 180,000 communication edges,
Alibaba’s topology shows a distinctive tree-like structure, with most nodes having an in-degree of
one.

While both architectures show some power law/heavy-tail behaviours, they manifest in different
ways. Meta sees power law behaviour primarily in service complexity (endpoint count), whereas Al-
ibaba sees heavy-tail distributions in call graph characteristics and service usage patterns.

This difference might reflect the two organisations’ different architectural choices and optimisation
priorities. Meta’s architecture consolidates complexity into a few highly complex services, while Al-
ibaba’s architecture distributes complexity across service interaction patterns.

Dynamic Behaviour

Both architectures exhibit highly dynamic behaviour but in different ways. Meta’s topology sees con-
stant flux with daily service creation and deprecation fluctuations. Alibaba’s dynamism manifests
more in request patterns, where a single service can generate up to nine classes of topologically dis-
tinct graphs. These observations suggest that while both architectures are dynamic, they express
dynamism at different system layers. It is important to note that Meta and Alibaba are very different
businesses - one is a social media platform, and the other is an e-commerce service, so differences in
dynamic behaviour are well expected.

Underlaying Infrastructure

Finally, some key infrastructure differences between Alibaba and Meta’s microservices architectures
likely influence design choices and behaviours. For example, Alibaba uses a cloud-based infrastruc-
ture with Kubernetes managing containerised microservices on bare-metal servers. In contrast, Meta
has its own geo-distributed on-premises data centres that are purpose-built for its specific needs.

Conclusion

Alibaba uses a microservices architecture to manage its large operations. This system supports over
20,000 microservices and allows quick adjustments to meet changing demands. It relies on complex
call structures and can scale dynamically to handle various tasks efficiently. By improving memory
stability, response time, and resource management, Alibaba effectively handles large events like the

Abhishek Tiwari 10.59350/4fttv-pt832 2024-12-22

https://doi.org/10.59350/4fttv-pt832

Microservice Architecture of Alibaba 9

Double 11 Shopping Festival. A comparison with Meta’s microservices architecture shows the impor-
tance of designing systems based on specific business needs. This comparison provides valuable in-
sights for organisations implementing large-scale microservices architecture.

References

[1] S. Luo et al., “An In-Depth Study of Microservice Call Graph and Runtime Performance,” 2022,
IEEE. doi: 10.1109/TPDS.2022.3174631.

[2] M. Xu et al., “Practice of Alibaba cloud on elastic resource provisioning for large-scale microser-
vices cluster,” 2024, Wiley. doi: 10.1002/spe.3271.

[3] A. Tiwari, “Unveiling Graph Structures in Microservices: Service Dependency Graph, Call Graph,
and Causal Graph,” 2024, Abhishek Tiwari. doi: 10.59350/hkjz0-7fb09.

[4] A. Tiwari, “Microservice architecture of Meta,” 2024, Abhishek Tiwari. doi: 10.59350/7x9hc-
t2q45.

Abhishek Tiwari 10.59350/4fttv-pt832 2024-12-22

https://doi.org/10.1109/TPDS.2022.3174631
https://doi.org/10.1002/spe.3271
https://doi.org/10.59350/hkjz0-7fb09
https://doi.org/10.59350/7x9hc-t2q45
https://doi.org/10.59350/7x9hc-t2q45
https://doi.org/10.59350/4fttv-pt832

	Hyperscale
	Anatomy of Microservice Call Graphs
	Heavy-Tail Distribution
	Tree-Like Structures
	Dynamic Topologies
	Hotspot Services
	Critical Path Complexity
	Call Dependency Fluctuations

	Key Insights
	Application Evolution
	Microservice Call Rate (MCR)
	Response Time Sensitivity
	Resource Utilisation Mismatch
	Memory Utilisation Stability
	Topology-Aware Allocation
	Impact of Dynamic Scaling
	Proactive and Reactive Strategies
	Enhanced Network Resource Management

	Comparing with Meta
	Scale and Service Count
	Topology Characteristics
	Dynamic Behaviour
	Underlaying Infrastructure

	Conclusion
	References

