
Multimodel Database or Polyglot
Persistence

Abhishek Tiwari
 

 

Citation: A. Tiwari, ”Multimodel Database or Polyglot Persistence”,
Abhishek Tiwari, 2015. doi:10.59350/6jena-v1040

Published on: March 10, 2015

https://orcid.org/0000-0003-2222-2395
https://doi.org/10.59350/6jena-v1040


Multimodel Database or Polyglot Persistence 1

In a recent InfoWorld article, FoundationDB’s Stephen Pimentel explained the rise of the multimodel
database. A multimodel database uses a single data store to support multiple data models. For in‑
stance, FoundationDB tries tomapdocuments, graphs, and relational tables to a key‑value data store.
Applications can either send their data directly to the FoundationDB key‑value data store or they can
speak to co‑located layers representingmultiple datamodels. Under the hood a layer is stateless and
translates a data model to store them as key‑value store.

Figure 1: FoundationDB is a multimodel database

Amultimodel database is quite different from polyglot persistence which support multiple datamod‑
els usingmultiple data stores. Although polyglot persistence is a highly effective architecture but not
without limitations. With polyglot persistence one may end up with multiple databases (both SQL
and NoSQL), each with its own storage and operational requirements. Unlike polyglot persistence
where you have to manage fault tolerance, scalability, and performance requirements for multiple
data stores individually, with multimodel database these requirements are simplified due to single
data store. That said, this may not be an issue if your requirements can be met using Database‑as‑
a‑Service (DaaS) offerings. For majority of use cases DaaS offerings such AWS RDS, AWS DynamoDB,

Abhishek Tiwari 10.59350/6jena-v1040 2015‑03‑10

http://abhishek-tiwari.com/post/polyglot-persistence-patterns
https://doi.org/10.59350/6jena-v1040


Multimodel Database or Polyglot Persistence 2

AWS Elasticache Redis, etc will be more than sufficient. In addition, with multimodel database data
integration can be easier when compared to polyglot persistence.

Figure 2: Polyglot persistence ‑ choice to select best data store for a given data model

In a nutshell, amultimodel database allows to keep goodparts of polyglot persistence (i.e. support for
multiple data models) but helps to lose the bad parts (i.e. reduced requirements for fault tolerance,
scalability, and performance).

Update‑1: Week after I published this article coincidently Apple acquired the FoundationDB and ba‑
sically killed the the whole FoundationDB platform. FoundationDB is not available for download any‑
more, all their public Github repos are unaccessible. Future of existing FoundationDB customers and
users is uncertain at this stage.

Update‑2: Commenting on FoundationDB acquisition, John Hugg of VoltDB wrote why a fast key‑
value store is not enough

fast data mutation and lookup‑by‑key are important, but they’re not enough. At high mutation
rates, users want visibility into how their data is changing and how their business is affected,
usually in real‑time. A fast key‑value store ‑ even one with strong ACID properties ‑ is all well and
good, but without a powerful query language and real index support, it’s much less interesting.

Abhishek Tiwari 10.59350/6jena-v1040 2015‑03‑10

http://techcrunch.com/2015/03/24/apple-acquires-durable-database-company-foundationdb/
http://voltdb.com/blog/foundationdbs-lesson-fast-key-value-store-not-enough?utm_expid=66808973-1.O562mQS1TnKG3RbsGkKu5Q.0
http://voltdb.com/blog/foundationdbs-lesson-fast-key-value-store-not-enough?utm_expid=66808973-1.O562mQS1TnKG3RbsGkKu5Q.0
https://doi.org/10.59350/6jena-v1040

