
MVC for data science is here

Abhishek Tiwari
 

 

Citation: A. Tiwari, ”MVC for data science is here”, Abhishek Tiwari, 2015.
doi:10.59350/39zj2-zx686

Published on: April 02, 2015

https://orcid.org/0000-0003-2222-2395
https://doi.org/10.59350/39zj2-zx686


MVC for data science is here 1

For those who are not familiar with MVC (Model–view–controller), MVC is a software architectural
pattern primarily used for web development and to implement user interfaces. Ruby on Rails (RoR),
Django, SpringMVC, ASP .net, Symfony, Zend, Express are some of themost popular MVC frameworks
currently available for rapid web development. Over the time web development community has im‑
mensely benefited from these MVC frameworks. So much that a TODO list application has become
something of a poster child for these MVC frameworks. In a nutshell, MVC frameworks have: 1) stan‑
dardised the web development; 2) lowered the web development learning curve, and; 3) accelerated
the web development and release cycle.

MVC for data science

Data science as it stands certainly need it’s own MVC moment, and it starts with machine learning.
PredictionIO ‑ An open‑source machine learning server made an early attempt in this direction using
a DASE architecture which includes D (Data source/data preparator), A (algorithms), S (serving) and E
(evaluator) components. LikeMVCwhich hasmodularise themodel, view and controller components
‑ PredictionIO’s DASE architecture helps you tomodularise DASE components so developers and data
scientist can build deployable prediction engines more quickly. In addition, in line with MVC compo‑
nents, DASE components maintain clear separation‑of‑concerns. This allows data scientists to swap
and evaluate algorithms as theywishwithout impacting the rest of platform typicallymanagedby the
developers. DASEmodularity is also appealing for developers. It offers developers flexibility to re‑use
the codebase and integrate prediction engine with a variety of applications using APIs.

Figure 1: Prediction engine using modular DASE components. Image credits PredictionIO.

Engine

The engine is responsible for making predictions. A prediction engine includes all DASE components
into a deployable state by specifying ‑ A data source component ‑ reads data from an input source

Abhishek Tiwari 10.59350/39zj2-zx686 2015‑04‑02

http://todomvc.com/
http://prediction.io
https://doi.org/10.59350/39zj2-zx686


MVC for data science is here 2

and transforms it into a desired format ‑ A data preparator component ‑ preprocesses the data and
forwards it to the algorithm for model training ‑ One or more algorithm(s) ‑ outputs trained models
with fine tuned parameters ‑ A serving component ‑ takes prediction queries, feed into models and
returns prediction results

An engine performs following key functions,

• Produces a trainedmodel using the training data set
• Allows external application to interact via web services
• Respond to prediction query in real‑time

One engine predicts only one thing.

Each engine processes data and constructs predictive models independently. Therefore, every
engine serves its own set of prediction results. For example, you may deploy two engines for
your mobile application: one for recommending news to users and another one for suggesting
new friends to users.

Overall ecosystem

Although the engine is a core part of PredictionIO and focus of this article, the overall ecosystem con‑
sists 3 key building blocks,

1. Event Server ‑ collects data from your application, in real‑time or in batch
2. Engine ‑ one or more engines responsible for its own set of prediction results
3. Template Gallery ‑ highly customisable engine templates for all kinds of prediction tasks

Abhishek Tiwari 10.59350/39zj2-zx686 2015‑04‑02

https://doi.org/10.59350/39zj2-zx686


MVC for data science is here 3

Figure 2: Application, event server and engine. Image credits PredictionIO.

External applications such as mobile or web apps,

• Push the event data into event server, which is used for model training and evaluation
• Poll the predicted results from engine by sending a prediction query to serving component

Abhishek Tiwari 10.59350/39zj2-zx686 2015‑04‑02

https://doi.org/10.59350/39zj2-zx686


MVC for data science is here 4

Figure 3: Integrating PredictionIO with your application. Image credits PredictionIO.

Technology stack

• The engine is written in Scala and APIs are built using Spray
• The engine is built on top of Apache Spark
• Event Server uses Apache HBase as the data store
• Trainedmodel is stored in HDFS (part of Apache Hadoop)
• Model metadata is stored in ElasticSearch

Figure 4: PredictionIO technology stack. Image credits PredictionIO.

Abhishek Tiwari 10.59350/39zj2-zx686 2015‑04‑02

https://doi.org/10.59350/39zj2-zx686

	MVC for data science
	Engine

	Overall ecosystem
	Technology stack

