
My Vagrant Workflow

Abhishek Tiwari

Citation: A. Tiwari, ”My Vagrant Workflow”, Abhishek Tiwari, 2012.
doi:10.59350/kpva5-7q381

Published on: October 19, 2012

https://orcid.org/0000-0003-2222-2395
https://doi.org/10.59350/kpva5-7q381

My Vagrant Workflow 1

For those who never heard about the Vagrant, it is a very handy way to manage, create and destroy
headless virtual machine (VM) environments.

Vagrant’s initial support was limited to VirtualBox because it’s core was tied with VirtualBox specific
code, but recent changes will allow Vagrant to support other VM types1. Other VM types will be sup‑
ported via plugin based providers 2. At the moment VirtualBox is the default provider. For Vagrant
1.2+, a AWS provider to Vagrant is avilable as plugin, allowing Vagrant to control and provision ma‑
chines in EC2 and VPC.

Update: This blog post has been updated for Vagrant version 2.

Currently, there are only two supported versions: “1” and “2”. Version 1 represents the configu‑
ration from Vagrant 1.0.x. “2” represents the configuration for 1.1+ leading up to 2.0.x.

Running a headless 3 virtual machine via Vagrant is not very different from running a virtual machine
using a front end. In my opinion Vagrant’s has several advantages,

• Lightweight in terms of resources (CPU/Memory/Disk Space) requirements.
• Portable via Vagrant boxes.
• Excellent support for provisioners such as Puppet and Chef.
• Easy configuration using Vagrantfile.
• Simplified port forwarding from guest to host and network configuration.
• Painless folder sharing between guest and host.

There are so many different reasons to use the Vagrant in your development workflow. But to me it
was always about having consistent disposable development environment on my all machines. Also
I prefer to isolate my development environment from host operating system in a cleaner way.

Disposable nature of environments created by Vagrant make them perfect fit for developing and test‑
ing configuration management scripts.

Installing Vagrant

Prerequisite: First download VirtualBox and install it. Vagrant currently requires VirtualBox 4.0.x or
4.1.x or 4.2.x.

You can download a Vagrant binary for your operating system, or install it as a gem

gem install vagrant

1Machine abstractionn
2http://docs.vagrantup.com/v2/providers/index.html
3Note default behavior is headless. You can also run Vagrant in GUI mode by setting in VagrantFile config.vm.
boot_mode = :gui

Abhishek Tiwari 10.59350/kpva5-7q381 2012‑10‑19

http://vagrantup.com/
https://github.com/mitchellh/vagrant-aws
http://www.virtualbox.org/wiki/Downloads
http://downloads.vagrantup.com/tags/v1.0.5
https://github.com/mitchellh/vagrant/commit/391dc392675c73518ebf04252d824fe916e8860b
https://doi.org/10.59350/kpva5-7q381

My Vagrant Workflow 2

MyWorkflow

My Vagrant workflow includes a workspace, a base box, a collection of Puppet recipes and multiple
project specific Vagrant instances 4.

MyWorkspace

I have a WorkSpace folder where all my Vagrant instance setups and development projects live. In‑
side WorkSpace I have project specific folders where each folder has its own Vagrantfile.

mkdir -p ~/WorkSpace/test
cd ~/WorkSpace/test

My Base Box

A Vagrant base box is tar package in a specific format for Vagrant use. You can download basic base
boxes from Vagrant website or you can create your own by packaging a VM/Vagrant instance. Vagrant
supports installing boxes from both the local file systems and an HTTP URL.

I am using using Ubuntu 12.04 LTS (Precise Pangolin) 64 bit as my Vagrant base box. First I install a
box

vagrant box add precise64 http://files.vagrantup.com/precise64.box

Once a base box is installed I can use it globally to the current Vagrant installation using box logical
name (precise64 in this case).

Vagrant Instance

Once box is installed I can create a Vagrant instance by just typing

vagrant init precise64

Configuring Vagrant Instance

A Vagrant instance configuration is controlled by Vagrantfile (generated by vagrant init). All Va‑
grant configuration options are embedded in following block,

4Best workflow

Abhishek Tiwari 10.59350/kpva5-7q381 2012‑10‑19

https://groups.google.com/d/topic/vagrant-up/dgdbZYDTvvU/discussion
https://doi.org/10.59350/kpva5-7q381

My Vagrant Workflow 3

Vagrant::Config.run do |config|
Configuration options

end

In Vagrant Version 2, above block remains backwards compatible and equivalent to,

Vagrant.configure("1") do |config|
"1" for version 1 Configuration options

end

In Vagrant version 2, default configuration block looks like following

Vagrant.configure("2") do |config|
"2" for version 2 Configuration options

end

Key options available to configure Vagrant are5,

Specifying The Base Box Logical name of the base image or box used to built the Vagrant
instance

config.vm.box = "precise64"

In addition you can also fetch the box if it doesn’t already exist on the system.

config.vm.box_url = "http://files.vagrantup.com/precise64.box"

Networking Configuration Vagrant provides host‑only and bridged networking. Please note that
NFS based folders sharing requires host only networking with a static IP.

For instance followingwill configure a host only network on the Vagrant VM that is assigned a static IP
of “33.33.33.10”

config.vm.network :hostonly, "33.33.33.10"

In Vagrant version 2, youmight use something like

Vagrant.configure("2") do |config|
config.vm.network :private_network, ip: "33.33.33.10"

end

5Key options for Vagrantfile

Abhishek Tiwari 10.59350/kpva5-7q381 2012‑10‑19

http://vagrantup.com/v1/docs/vagrantfile.html
https://doi.org/10.59350/kpva5-7q381

My Vagrant Workflow 4

Port Forwarding This option can be used multiple times to define more than one port mapping
between host and guest. Using following, traffic sent to port 80/8000 on the host machine will be
delivered to port 8080/8000 on the guest machine.

config.vm.forward_port 8080, 80
config.vm.forward_port 8000, 8000

Again in Vagrant version 2,

Vagrant.configure("2") do |config|
config.vm.network :forwarded_port, guest: 8080, host: 80
config.vm.network :forwarded_port, guest: 8000, host: 8000

end

Shared Folders/Synced Folders/NFS You can create a shared folder mapping between host and
guest by adding shared folder option,

config.vm.share_folder "foo", "/guest/path", "/host/path"

where foo is logical name for the mapping. Required arguments are logical name, host path and
guest path. Host path is relative to Vagrantfile. Additional option arguments can be passed when
required.

Default sharing method and shared folder performance depends on VM type. For instance, a Virtual‑
Box shared folder performance is inversely affected by number of files in the shared folder.

When run on Linux or Mac hosts, Vagrant can also share files to the guest via NFS. Unlike VirtualBox
shared folder, for NFS shared folder performance does not degradewith increase in number of files in
the shared folder. You can enable NFS sharing as

config.vm.share_folder "vagrant-root", "/vagrant", ".", :create=> true, :
nfs => true

where create set to true, Vagrant will create host path if does not exist.

ForNFS sharing, hostmachine requiresNFS server daemonwhich comespre‑installedonMacbut you
can install it on your Linux host. Note NFS is not supported on Windows hosts.

Moreover you can also pass optional arguments for folder permissions, set the owner and group or
set directory and file mode

config.vm.share_folder "vagrant-root", "/vagrant", ".", :owner => "foo", :
group => "foo"

config.vm.share_folder "vagrant-root", "/vagrant", ".", :extra => "dmode
=770, fmode=770"

Abhishek Tiwari 10.59350/kpva5-7q381 2012‑10‑19

https://doi.org/10.59350/kpva5-7q381

My Vagrant Workflow 5

From version 2 Vagrant provides a more generic configuration synced_folder (share_folder
is more VirtualBox specific).

The first parameter is a path to a directory on the hostmachine. If the path is relative, it is relative
to the project root. The second parametermust be an absolute path of where to share the folder
within the guest machine.

config.vm.synced_folder "host/path", "/guest/path"

Changing owner/group, ~~~ config.vm.synced_folder “src/”, “/srv/website”, owner: “root”, group:
“root” ~~~

Enabling NFS synced folders, ~~~ config.vm.synced_folder “.”, “/vagrant”, :nfs => true ~~~

Starting Vagrant Instance

You can start a Vagrant instance by running following which will create a fully functional virtual ma‑
chine.

vagrant up

Once virtualmachine is up and running, usingvagrant sshwill automatically drop you into a fully
functional terminal shell to guest machine,

vagrant ssh
vagrant@precise64://vagrant$

To access the shared folder you can change directory to /vagrant. Normally I add cd /vagrant
in .bashrc file of vagrant user on Vagrant VM which allows me drop directly into shared folder
/vagrant on ssh.

Stopping Vagrant Instance

You can halt, suspend, reload or destroy a Vagrant instance.

Halting vagrant halt provides a graceful shutdown of virtual machine. To resume working
again run vagrant up.

Reloading vagrant reload will quickly restart the virtual machine, apply any configuration
change in Vagrantfile and run the provisioner (skipping the import sequence).

Abhishek Tiwari 10.59350/kpva5-7q381 2012‑10‑19

https://doi.org/10.59350/kpva5-7q381

My Vagrant Workflow 6

Suspending vagrant suspend will save the current running state of your virtual machine and
then stop it. To resume working again run vagrant resume.

Destroying vagrant destroywill delete the complete virtual machine setup from the disk. To
resume working again run vagrant up (full rebuild and import).

Specifying The Provisioner

Vagrant provisioners allows you to easily install softwares, packages, libraries and configure them.
Vagrant supports various provisioners including Puppet and Chef. Puppet and Chef provisioners can
be used both in solo/standalonemode as well server mode.

I prefer to use to Puppet as provisioner but based on your familiarity you can choose Chef or any other
option. config.vm.provisionmethod is used to enable provisioners as following.

config.vm.provision :provisioner_identifier, :key1 => "value1", :key2 => "
value2"

where,provisioner_identifier=puppet,puppet_server,chef_solo,chef_client
, shell etc.

Provisioner configuration details are provided using the using key‑value options. In addition often a
longer form is used to describe provisioner and configuration. For instance following longer form is

config.vm.provision :puppet do |puppet|
puppet.manifests_path = "manifests"
puppet.manifest_file = "site.pp"

end

is same as following.

config.vm.provision :puppet, manifests_path => "manifests", manifest_file
=> "site.pp"

Vagrant also allows to pass additional option to provisioner using options variable

config.vm.provision :puppet, :options => "--verbose --debug" do |puppet|
puppet.manifests_path = "manifests"
puppet.manifest_file = "site.pp"

end

Abhishek Tiwari 10.59350/kpva5-7q381 2012‑10‑19

https://doi.org/10.59350/kpva5-7q381

My Vagrant Workflow 7

Provisioning Vagrant Instance

Once provisioner and related configuration details are specified, we can run provisioner using
vagrant up or vagrant reload or vagrant provision. For already running virtual
machine you can call either vagrant reload or vagrant provision. As explained above
vagrant reload will apply both changes in Vagrantfile as well as provisioner configuration.
Running vagrant provisionwill just apply changes in the provisioner configuration.

Abhishek Tiwari 10.59350/kpva5-7q381 2012‑10‑19

https://doi.org/10.59350/kpva5-7q381

	Installing Vagrant
	My Workflow
	My Workspace
	My Base Box
	Vagrant Instance
	Configuring Vagrant Instance
	Starting Vagrant Instance
	Stopping Vagrant Instance
	Specifying The Provisioner
	Provisioning Vagrant Instance

