
Object‑inspired container design
patterns

Abhishek Tiwari
 

 

Citation: A. Tiwari, ”Object‑inspired container design patterns”, Abhishek
Tiwari, 2017. doi:10.59350/pmv7s-vf080

Published on: March 28, 2017

https://orcid.org/0000-0003-2222-2395
https://doi.org/10.59350/pmv7s-vf080


Object‑inspired container design patterns 1

If we start thinking containers in terms of objects, it abstracts away the low‑level details but reveals
higher‑level patterns that are common to a variety of applications and algorithms. A recent paper,
published by Google Researchers Brendan Burns and David Oppenheimer, suggests that containers
are particularlywell‑suited as the fundamental “object” in distributed systemsby virtue of thewalls they
erect at the container boundary. Inmanyways, this paper is seminal research publication and authors
believe that containers are destined to become analogous to objects in object‑oriented software sys‑
tems.

Burns and Oppenheimer describe three types of design patterns: 1) single‑container patterns for con‑
tainermanagement, 2) single‑node patterns of closely cooperating containers, and 3)multi‑node pat‑
terns fordistributedalgorithms. Inspiredbyvariouswell‑documentedobject‑orientedpatterns, these
container patterns encode best practices, simplify development, make distributed computing more
reliable.

Single‑container management patterns

Containers provide interfaces that can be used to define application‑specific functionality (aka up‑
ward APIs) as well as to interact with management systems (aka downward API). Using upward APIs,
developers can access a range of application details, including application‑specific monitoring met‑
rics (QPS, application health, etc.), profiling information (threads, stack, lock contention, network
message statistics, etc.), component configuration information, and component logs. For instance,
Kubernetes allows developers to define health checks via specified HTTP endpoints (e.g. /health
).

Abhishek Tiwari 10.59350/pmv7s-vf080 2017‑03‑28

http://dl.acm.org/citation.cfm?id=3027059
https://doi.org/10.59350/pmv7s-vf080


Object‑inspired container design patterns 2

Figure 1: Upward and Downward API Pattern

Containers also provide downward APIs to manage container lifecycle which is controlled by a con‑
tainer cluster management system. Downward APIs also enables to create life cycle contracts be‑
tween application and cluster management systemwhich can be very useful to maintain application
and container reliability. For example, Kubernetes issues SIGTERM signal before SIGKILL signal

Abhishek Tiwari 10.59350/pmv7s-vf080 2017‑03‑28

https://doi.org/10.59350/pmv7s-vf080


Object‑inspired container design patterns 3

which allows the application to terminate cleanly by finishing in‑flight operations, flushing state to
disk, etc. Similarly, Downward APIs are useful for a container to have information about itself or the
system. For instance, downward API that a containermight support is “replicate itself” in response to
an auto scaling trigger.

Single‑node, multi‑container application patterns

In this pattern,multiple related or interdependent containers are co‑scheduled onto a single hostma‑
chine. In Kubernetes, this abstraction is called Pods. For instance, a Pod may have one container for
Nginx as a proxy, a second container for the Application server, a third container for MySQL database
server, and a persistent volume to store MySQL data.

Sidecar pattern

In a sidecar pattern, the functionality of themain container is extended or enhanced by a sidecar con‑
tainer without strong coupling between two. Although it is always possible to build sidecar container
functionality into the main container, there are several benefits with this pattern,

• different resource profiles i.e., independent resource accounting and allocation
• clear separation of concerns at packaging level i.e., no strong coupling between containers
• reusability i.e., sidecar containers can be paired with numerous different “main” containers
• failure containment boundary, making it possible for the overall system to degrade gracefully
• independent testing, packaging, upgrade, deployment and if necessary roll back

Abhishek Tiwari 10.59350/pmv7s-vf080 2017‑03‑28

https://doi.org/10.59350/pmv7s-vf080


Object‑inspired container design patterns 4

Figure 2: An example Sidecar pattern: here main container is a web server which is paired with a log
saver sidecar container that collects the web server’s logs from local disk and streams them to
centralized log collector.

Ambassador pattern

In this pattern, an Ambassador container act as a proxy between two different types of main contain‑
ers. Typical use case involves proxy communication related to load balancing and/or sharding to hide
the complexity from the application.

Abhishek Tiwari 10.59350/pmv7s-vf080 2017‑03‑28

https://doi.org/10.59350/pmv7s-vf080


Object‑inspired container design patterns 5

Figure 3: An example of the ambassador pattern: an application is speaking the memcache protocol
with a twemproxy ambassador. In reality, twemproxy is sharding the requests across a distributed
installation of multiple memcache nodes elsewhere in the cluster.

Adapter pattern

In this pattern, an adapter container offers standardized output and interfaces acrossmultiple hetero‑
geneous main application containers.

In contrast to the ambassador pattern, which presents an application with a simplified view of
the outside world, adapters present the outside world with a simplified, homogenized view of
an application. They do this by standardizing output and interfaces across multiple containers.

Abhishek Tiwari 10.59350/pmv7s-vf080 2017‑03‑28

https://doi.org/10.59350/pmv7s-vf080


Object‑inspired container design patterns 6

Figure 4: An example of the adapter pattern: adapters that ensure all containers in a system have
the samemonitoring interface. The main container can communicate with the adapter through
localhost or a shared local volume.

Multi‑node application patterns

Modular containers enable us to build coordinated multi‑node distributed applications. Obviously,
multi‑node application patterns require Pod like abstraction.

Leader election pattern

In this pattern, the leader‑election containers serve as sidecar containers and are co‑scheduled with
main application containers those require leader election. Thes leader‑election containers can per‑
form election amongst themselves, and they can present a simplified HTTP API over localhost to
each application container that requires leader election (e.g. becomeLeader, renewLeadership, etc.).
Leader‑election containers can be re‑used by different type of main applications

Work queue pattern

In this pattern, one can implement a generic work queue framework using containers that implement
the run() and mount() interfaces and can take arbitrary processing code packaged as a container,
and arbitrary data, and build a complete work queue system.

Abhishek Tiwari 10.59350/pmv7s-vf080 2017‑03‑28

https://doi.org/10.59350/pmv7s-vf080


Object‑inspired container design patterns 7

Figure 5: An example of the Work queue pattern: reusable work execution framework containers
pull task and associated data to local filesystemwhich is used by user‑supplied implementation
container to perform actual task.

Scatter/gather pattern

This pattern is quite similar to MapReduce framework. Here an external client sends an initial re‑
quest to a framework supplied root container. This root fans out the request to a large number of
developer‑supplied leaf containers to perform computations in parallel. Then another developer‑
supplied merge container responsible for merging or aggregate the results. You can think root con‑
tainer as map step and merge container as a reduce step in MapReduce paradigm. You can extend

Abhishek Tiwari 10.59350/pmv7s-vf080 2017‑03‑28

https://doi.org/10.59350/pmv7s-vf080


Object‑inspired container design patterns 8

this pattern, by introducing ashuffle container which is similar to a shuffle step in MapReduce pro‑
cess.

Figure 6: An example of the scatter/gather pattern: a reusable root container implements client
interactions and request fan‑out to developer‑supplied leaf containers and to a developer‑supplied
merge container responsible for aggregating the results

Conclusion

As you can see here, containers provide many of the same benefits as objects in object‑oriented sys‑
tems, i.e. abstraction, encapsulation, reusability and so on.

Abhishek Tiwari 10.59350/pmv7s-vf080 2017‑03‑28

https://doi.org/10.59350/pmv7s-vf080

	Single-container management patterns
	Single-node, multi-container application patterns
	Sidecar pattern
	Ambassador pattern
	Adapter pattern

	Multi-node application patterns
	Leader election pattern
	Work queue pattern
	Scatter/gather pattern

	Conclusion

