
Organise your engineering teams
around the work by reteaming

Abhishek Tiwari
 

 

Citation: A. Tiwari, ”Organise your engineering teams around the work by
reteaming”, Abhishek Tiwari, 2019. doi:10.59350/e0r9t-mfq72

Published on: July 20, 2019

https://orcid.org/0000-0003-2222-2395
https://doi.org/10.59350/e0r9t-mfq72


Organise your engineering teams around the work by reteaming 1

When it comes toorganisingengineering teams, apopular viewhasbeen toorganiseyour teamsbased
on either Spotify’s agile model (i.e. squads, chapters, tribes, and guilds) or simply follow Amazon’s
two‑pizza teammodel. On a positive note, both organisational models focus on having small yet pro‑
ductive independent cross‑functional teams and there is nothing wrong to draw inspiration from ei‑
ther of these models when building your engineering organisation. Both models work on the scale,
particularly when the company’s core values, priorities, and culture all three are well aligned. Now,
this is where most companies fail, either by putting too much focus on core values and culture but
forgetting about business priorities or just focusing on business priorities but not enough stress on
core values and culture.

Don’t be trapped by dogma

A lot has been said andwritten aboutwhy somethingworked for Spotifymay not apply to your organi‑
sation, and the purpose of this article is not to go in those discussions but to highlight practical issues
with thesemodels. One thing stand‑out tome is need to be intentional and practical about your engi‑
neeringorganisationdesign. First and foremost, being intentional about organisationdesign requires
good and honest discussions about all possible options. Secondly, you need flexibility and room for
error when iterating andworking with your organisational structure. Lastly, as an executive or leader,
you should never get too attached to dogmas. This is one point I can’t stressmore. Wikipedia defines
dogma as a principle or set of principles laid down by an authority as incontrovertibly true. And there
lies the problem. As Steve Jobs wisely said,

Don’t Be Trapped by Dogma – Which is Living With the Results of Other People’s Thinking

In my view, technology executives and engineering leaders are overly obsessed with the Spotify
model. I strongly think that executives and leaders need to be very conscious of their choices. Instead
of blindly following what everyone else does, they should make decisions based on priorities and
practicalities.

Over specialisation

One side effect of not being intentional about the organisation design is specialisation starts becom‑
ing teams of their own. Specialisation creates silos which mean teams’ learn and evolve within their
own silos without enough cross‑pollination of ideas. Specialisation could be around products, busi‑
ness process, or technologies. Let’s take an example of retail as a domain of interest. One way to cre‑
ate a Spotify model inspired engineering organisation is to organise long‑lived squads by retail busi‑
ness process hubs ‑ i.e. specialisation around business process. As a bare minimum, I can think of an
engineering organisation of 6 Spotify like squads with each team consisting of 8‑10 people including

Abhishek Tiwari 10.59350/e0r9t-mfq72 2019‑07‑20

https://doi.org/10.59350/e0r9t-mfq72


Organise your engineering teams around the work by reteaming 2

engineers (frontend/backend), BA, PO, and an agile coach. That’s an overall engineering organisation
of 55+ people including tribe leaders, chapter leads, etc.

• Warehouse engineering squad ‑ managing software services related inventory, stocktake, dis‑
patch, allocation, transfer, robotics, etc.

• Customer experience engineering squad ‑ focus on end‑to‑end customer life‑cycle, marketing,
targeting, personalisation, loyalty, etc.

• Store engineering squad ‑ focus on software and systems required for the storefront including
point‑of‑sales system, promotions, etc.

• ERP engineering squad ‑ supply chain planning, purchase ordermanagement, product lifecycle
management, merchandise planning, etc.

• Back‑office engineering squad ‑ customer support, business intelligence, real‑estate manage‑
ment, systems for finance & HR, etc.

• Supplier engineering squad ‑ focus on supplier marketplace, demand and replenishment fore‑
casting, risk and compliance, etc.

Warehouse

Supplier

Store

Customers

ERP

Back-office Staff

Figure 1: Retails domain ‑ creating engineering organisation around business process hubs

Now one may ask ‑ is this the most effective engineering organisation for a retail business? Certainly
not. It is one of the ways you can organise your engineering teams in a retail environment. The right
answermostly depends on the triad Imentioned earlier ‑ core values, business priorities, and culture.
For instance, if youare fast‑growingVC fundede‑commerce startupandyournumberonebusinesspri‑
ority ismultiplying current growth andperforming exceptionallywell on key financialmetrics charted

Abhishek Tiwari 10.59350/e0r9t-mfq72 2019‑07‑20

https://doi.org/10.59350/e0r9t-mfq72


Organise your engineering teams around the work by reteaming 3

outbyyour investors. In thecurrent environmentwherebusiness ideas canbeeasily cloned inmonths
and features can be copied in days, you want to move fast. The engineering organisation described
may not work for you because of a team of 8‑10 people is still a very big overhead.

In this model, software architecture and code ownership is a reflection of the organisational design.
So when it comes time to doing work which has deep dependencies generally you have to figure out
which team is going to do what. This leads to endless meetings where engineering management get
involved to discuss what’s to be built, how to break up dependencies in manageable chunks and del‑
egate them to various teams.

Over specialisation is considered good in industries such as healthcare and aviation but in software
engineeringover specialisationcanbeablocker. Unlikehealthcareandaviationwherepracticesdon’t
change over the decades, software engineering and related technologies are changing every day.

Long‑lived procrastination

Most of the software engineering organisations are designed around long‑lived or stable teamswhere
teams composition and focus (i.e. product) don’t change over a long period. The very idea of long‑
lived teams came from Scrum (see LeSS and SAFe agile guides). Both Spotify model as well as Ama‑
zon’s two‑pizza team model don’t say anything explicitly about longevity of the teams composition
and or focus. In fact, Spotify has adopted amore fluid teammodel.

In my opinion, long‑lived teams are generally good at many things. For instance, over time

• long‑lived teams get better in terms of predictability ‑ i.e. considering a similar type of work
given repeatedly over the time you will see less variance in team’s agile estimations.

• long‑lived teams get better in terms of internal communication and expectationsmanagement
‑ i.e. each teamsmembers knowwhat to expect and how to communicate with other members.

Sadly, long‑lived teams are equally bad on several things such as,

• long‑lived teams are particularly good on procrastination. Either they try to build perfect prod‑
ucts or worse use their time to perfect their code by excessive re‑factoring and re‑engineering.

• long‑lived teams get bored very quickly due to the repetitive and homogeneous nature of work
which they channel out by spending time on things like open source projects.

Team performance model such as Tuckman’s Team‑Development Model (Forming, Storming, Norm‑
ing and Performing) don’t factor aspiration and career goals of individual teammembers. Tuckman’s
model was published in 1965, since then our workplaces have drastically changed. Although Tuck‑
man’smodel is still useful to understand teamdynamics, it’s not an immutable law of team evolution.
A case in point is hackathon events (aka Hack days or Shipit days) which typically attract diverse set

Abhishek Tiwari 10.59350/e0r9t-mfq72 2019‑07‑20

https://doi.org/10.59350/e0r9t-mfq72


Organise your engineering teams around the work by reteaming 4

engineers ‑ mostly stranger to each other ‑ yet forming, storming, norming, performing all happens
within 48hrs. How is that even possible?

Is it possible to draw inspiration from outside of software engineering? Probably yes. In industries
like aviation, it’s impossible to create long‑lived cockpit crew composition. Airline crew pairing and
composition problem is an area of deep research. Crew composition and pairing need to work with
aircraft schedule aswell as crew’s punctuality. For instance, if one of the pilots get sick, the airline still
has to operate flight by allowing a replacement pilot to take over. Luckily, aircraft operating manuals
and training procedures are so formalised andwell established that there is no scope of performance
degradation even if oneormore crewmembers are replaced. Now, one can argue that unlike software
flying aircraft is a repetitive task. But again, when flying aircraft, stakes are way too high to the point
that a slight miscommunication or misalignment in crew expectations can be fatal.

I also have a strong feeling that long‑lived teams are not good for innovation and disruption. As time
passes, teams get in their comfort zone and can’t think beyond their cocoon which generally comes
with over specialisation and silos.

Contrarian view

What I am proposing here is a set of principals to change how you deploy your engineers to do their
best work in a truly fast‑paced environment. Each of these goes against the popular opinion hence
why they are worth your time.

• Organise your engineering teams around the work by reteaming
• Optimise your engineering organisation for velocity over predictability
• Avoid the illusion of progress ‑ being very much directional all the times
• Create a culture where everyone is directly involved in value creation
• Select a technology architecture which scales with your organisation
• Have cooling‑offmechanisms in place to avoid burnout of your best talent

Organising around the work

Organising your engineering organisation and teams around the work by reteaming in short‑lived
teams and not in long‑lived streams. Design your teams to stay small and iterate fast. Start by cre‑
ating delivery teams of 4‑5 people, basically cutting the size of traditional Spotify squads to half. By
doing this you are cutting communication overhead and process problems roughly by 4 times (as‑
suming communication overhead and process problems are proportional to [n * (n ‑ 1) / 2], where n
is group size). Below are some of the rule on engagements when organising around the work,

Abhishek Tiwari 10.59350/e0r9t-mfq72 2019‑07‑20

https://doi.org/10.59350/e0r9t-mfq72


Organise your engineering teams around the work by reteaming 5

• Firstly, keep the composition of these delivery teamsof fluid and flexible to the point that teams
are short‑lived (as a rule of thumb 6months at max). Because you are changing team composi‑
tion, you need robust norms of conduct and engineering practices in place.

• Secondly, fine‑tune team composition based on work. Depending on work you can choose
a smaller team of similar expertise (for example a team with mostly frontend engineers) or a
smaller team of diverse expertise (teamwith balanced frontend, backend, data engineers).

• Thirdly, let engineers themselves choose the delivery teams and organise them around the ini‑
tiative. Teach your engineers how to do teaming, reteaming, and onboard new team mem‑
bers. Encourage high‑collaboration practices by running regular hack days or mob program‑
ming events.

• Fourthly, favour generalist over specialist i.e hiresmore full‑stack engineers. Encourage special‑
ist to diversify their skills as long as it aligns with their career goals and job expectations.

• Lastly, make upcoming work or initiative visible and transparent to everyone so people are
aware of what’s next in the pipeline. I suggest maintaining a high‑level work and reteaming
wall where engineers can pitch themselves and other members for the upcoming work (see fol‑
lowing illustration).

Abhishek Tiwari 10.59350/e0r9t-mfq72 2019‑07‑20

https://doi.org/10.59350/e0r9t-mfq72


Organise your engineering teams around the work by reteaming 6

Objective:
Deliver new

checkout flow

Objective:
Deliver Apple Pay

Integration

To Do Doing Done

Work & Reteaming Wall

Objective:
Deliver new call
center workflow

Objective:
Deliver 3s global

avg. response time

Objective:
Deliver warehouse
stocktake robotics

Objective:
Deliver new

discount engine

Figure 2: Organising your engineering teams around the work using fluid and flexible reteaming. A
high‑level work and reteaming wall where engineers can pitch themselves and other members to
self‑organise for the upcoming work.

Reteaming

In my opinion, reteaming allows you to change your team composition and their focus continually.
Sometimes new teamsare createdby sourcing teammembers fromother existing teams. Onother oc‑
casions, you bring new engineering hires and jell them some existing senior engineers in your organi‑
sation. Teamscreatedby reteamingaregenerally short‑livedor temporaryandmanywaysoppositeof
long‑lived teams. Reteaming has been specially useful to support requirements of fast‑growing com‑
panies, companiesundergoingmassive transformation, or companies trying todevelopnewproducts
on an unprecedented pace.

Several reteaming models have been developed to support teams’ fluidity. For instance, isolation,

Abhishek Tiwari 10.59350/e0r9t-mfq72 2019‑07‑20

https://doi.org/10.59350/e0r9t-mfq72


Organise your engineering teams around the work by reteaming 7

one by one, grow and split (like cell mitosis), merging, switching, etc. Valve’s approach to reteaming
is probablyoneof thebest out there. Valve introducedcabals, self‑selectingand self‑organising teams
largely temporary.

Cabals are really just multidisciplinary project teams. We’ve self‑organized into these largely tempo‑
rary groups since the early days of Valve. They exist to get a product or large feature shipped. Like any
other group or effort at the company, they form organically. People decide to join the group based on
their own belief that the group’s work is important enough for them to work on.

Asmentionedbeforehackathonevents suchasHackdaysandShipit daysareanothergreatway tocre‑
ate reteaming culture in your engineering organisation. Inmy ownwork, I also had very good success
with technology boot camps particularly useful for one by one reteaming. We ran technology boot
camps every quarter, aligned with our quarterly goal (OKRs) cycles. We used tactics like war rooms
i.e. isolation reteaming to deliver urgent product initiatives. Similarly, many companies regularly do
mob programming to promote reteaming.

Velocity over predictability

I covered this briefly in one ofmy recent blog posts (see [1]). Agile teams optimised for velocity gener‑
allydelivermorevalueper release. Why this is so important? Building the rightproduct is as important
as delivering the product on time. Technology is changing at a very fast pacewhichmakesmost of the
product companies vulnerable to disruption and getting cloned. SaaS products can be easily cloned
inmonths and product features can be copied in days. If you aren’t the fastest company you essential
start losing market share. Just look how Microsoft Team ‑ which initially started as a Slack clone ‑ is
now surpassed Slack in terms of daily active users. Microsoft Teamnow reports 13million daily active
users more than 10 million people who use Slack daily.

Avoid illusion of progress

If you’re going in the wrong direction, it doesn’t matter how fast you’re moving. It’s important to un‑
derstand the subtle difference between speed and velocity. Velocity is directional (a vector in mathe‑
matical term). Similarly, distance covered by directionless speed is just an illusion of progress. Real
progress (or displacement) comeswhen velocity is applied in the right direction. That’s when you see
things get done.

If only agile metrics were vector but unfortunately they are not. Agile metrics are scalar values with
zero or minimal indicators on the direction which is why they give the illusion of progress but real
progress hard to recognise.

Abhishek Tiwari 10.59350/e0r9t-mfq72 2019‑07‑20

https://doi.org/10.59350/e0r9t-mfq72


Organise your engineering teams around the work by reteaming 8

Distance, Speed, Illusion of progress

Displacement, Velocity, Real Progress
Figure 3: Direction over speed and why you should avoid illusion of progress

De‑coupled and stateless architecture

Select a technology architecture which scales with your organisation i.e. an architecture which en‑
ables the scaling of your engineering organisation easier. Just like architecture, teams should be
loosely coupled or better completely de‑coupled. This requires well‑documented coding standards
and architectural design patterns so that standards and patterns are well aligned.

Just like architecture teamsshouldbe stateless i.e. less cognitiveoverloadof context so they canmove
fast. This happens when everyone in your organisation understands your products and offering well.
Remember code ownership is overrated. No one remembers the code theywrote 3months ago forget

Abhishek Tiwari 10.59350/e0r9t-mfq72 2019‑07‑20

https://doi.org/10.59350/e0r9t-mfq72


Organise your engineering teams around the work by reteaming 9

about 6months or a year. What they do remember is the problem they solved and the approach they
undertook to deliver the feature.

If implemented correctly, microservices pattern sufficiently decouples engineering teams andmostly
parallelise their ability to build new things with less blockage and dependencies. In similar vein pat‑
terns like single spa, micro‑frontend, shared UI components as npm packages, can parallelise the
frontend development work. With the emergence of versioned serverless functions and per‑branch
environments, teams have several tools on their disposal to unblock themselves.

Everyone is a value creator

You lean down your leadership and management layers, and set a clear expectation that everyone
should create value by directly being involved in actual work (i.e. doing one of the below),

• contributing by writing software
• performing code reviews
• driving technical architecture
• pairing with junior engineers
• helping to test software
• involved in writing stories
• designing the UI and UX
• preparing product launch
• creating work backlog

In this new landscape, your managers and leaders have to find ways to add value ‑ activities such as
delegation, co‑ordination, etc only create marginal direct value.

Cooling‑offmechanisms

Probably one of the biggest drawbacks of organising your engineering teams around thework is burn‑
out of your topperformers, particularly your rockstar engineerswhoare continuously looking for chal‑
lenging works. For some top performers quarterly goals (OKRs) can be addictive. You need to have
preventive measures to avoid burnouts. One of the options is to rotate your engineers andmanagers
on a 3 months long production support stream where they are rested from any aggressive goals and
timelines. Resting in sports is a very common practice. This allows to recover or recharge individual
for optimal performance.

Abhishek Tiwari 10.59350/e0r9t-mfq72 2019‑07‑20

https://doi.org/10.59350/e0r9t-mfq72


Organise your engineering teams around the work by reteaming 10

Closing thoughts

I may have not tackled some of the burning questions particularly how to support or maintain soft‑
ware when teams composition is so fluid and dynamic. Some people have suggested that long‑lived
teams are better on maintaining software which is never backed by any data. Again code ownership
is overrated so we may be overestimating the benefits of long‑lived teams concerning maintenance.
Some companies took all hands on deck approach especially around major issues. Others use a pro‑
duction support stream. Theremay bemore creative ways to performmaintenance activities but I let
you do your own homework.

{{< youtube 9UyRxFDe0yI >}}

References

[1] A. Tiwari, “Agile: Optimise for Velocity Over Predictability,” 2019, Abhishek Tiwari. doi:
10.59350/m6kre‑nkk76.

Abhishek Tiwari 10.59350/e0r9t-mfq72 2019‑07‑20

https://doi.org/10.59350/m6kre-nkk76
https://doi.org/10.59350/e0r9t-mfq72

	Don’t be trapped by dogma
	Over specialisation
	Long-lived procrastination
	Contrarian view
	Organising around the work
	Reteaming
	Velocity over predictability
	Avoid illusion of progress
	De-coupled and stateless architecture
	Everyone is a value creator
	Cooling-off mechanisms
	Closing thoughts
	References

