
Pre‑Deployment Policy Compliance

Abhishek Tiwari

Citation: A. Tiwari, ”Pre‑Deployment Policy Compliance”, Abhishek Tiwari,
2023. doi:10.59350/ngt0n-5dm13

Published on: July 23, 2023

https://orcid.org/0000-0003-2222-2395
https://doi.org/10.59350/ngt0n-5dm13

Pre‑Deployment Policy Compliance 1

The ability to deploy applications quickly and efficiently is crucial for organizations. Agilemethodolo‑
gies and continuous integration/continuous deployment (CI/CD) pipelines have become the norm,
enabling rapid release cycles and frequent updates. However, amidst the drive for speed, ensuring
policy compliance is often overlooked, leading to potential security vulnerabilities and compliance
risks. Pre‑deployment policy compliance, supported by policy as code frameworks such as Sentinel,
Open Policy Agent (OPA), Conftest, etc. is an emerging approach that enables organizations to ensure
secure deployments while adhering to policies and regulatory requirements. In this article, we will
explore into the significance of pre‑deployment policy compliance, explore the role of policy as code
frameworks, and showcase real‑life examples of successful implementations.

Understanding Pre‑Deployment Policy Compliance

Pre‑deployment policy compliance involves verifying that software applications adhere to specific
policies, regulations, and guidelines before they are deployed into production environments. These
policies encompass a wide range of concerns, including security best practices, data protection mea‑
sures, industry regulations, privacy laws, accessibility requirements, and internal organizational poli‑
cies.

In traditional softwaredevelopmentpractices, compliancechecksoftenoccur late in thedevelopment
lifecycle, closer to deployment. However, this approach carries risks, as non‑compliance discovered
at that stage may result in costly rework and potential security breaches.

Toaddress these challenges, the concept of “Shift Left”has gainedprominence, emphasizing the early
integration of compliance checks in the software development process. By adopting a proactive ap‑
proach, organizations can identify and address compliance issues early, reducing the likelihood of
non‑compliant software being deployed.

Policy as Code Frameworks: Enabling Pre‑Deployment Policy Compliance

Policy as code frameworks play a critical role in facilitating pre‑deployment policy compliance. They
allow organizations to codify policies into machine‑readable formats, which are then automatically
validated against code, configurations, and deployment artifacts. By integrating policy as code frame‑
works into CI/CD pipelines, compliance checks are seamlessly integrated into the development pro‑
cess.

Here are some policy as code frameworks used for pre‑deployment policy compliance:

Sentinel: Developed by HashiCorp, Sentinel is a policy as code framework that integrates with var‑
ious HashiCorp products, including Terraform, Vault, and Consul. It allows organizations to define
policies in a domain‑specific language (DSL) tailored to infrastructure‑as‑code (IAC) configurations.

Abhishek Tiwari 10.59350/ngt0n-5dm13 2023‑07‑23

https://doi.org/10.59350/ngt0n-5dm13

Pre‑Deployment Policy Compliance 2

For instance, Sentinel policies can enforce rules such as “All AWS S3 buckets must have server‑side
encryption enabled” or “Only specific IAM roles can access certain resources.”

Open Policy Agent (OPA): OPA is an open‑source policy as code framework that provides a general‑
purpose policy engine. It supports multiple query languages, including Rego, which allows organiza‑
tions to express policies declaratively. OPA can be integrated with a wide range of tools and systems,
making it highly versatile. For example, OPA can be used to enforce policies related to Kubernetes
deployments, API access control, andmore.

Conftest: Conftest is a tool designed to enforce policies on configuration files. It integrates with var‑
ious configuration management tools like Kubernetes, Helm, and Terraform. Organizations can use
Conftest to ensure that configuration files adhere to specific policy rules before deployment. For ex‑
ample, Conftest can validate that Kubernetes deployments have the required resource limits defined
or that Terraform configurations adhere to organizational naming conventions.

terraform‑compliance: As thenamesuggests, terraform‑compliance focusesonenforcingcompliance
on Terraform configurations. It allows organizations to define compliance rules using natural lan‑
guage constructs or BDD like specifications. For instance, terraform‑compliance can enforce that all
AWS EC2 instances have specific tags defined or that all Google Cloud resources have encryption en‑
abled.

Checkov: Checkov is a static code analysis tool. Checkov scans IAC files for misconfigurations that
may lead to security or compliance problems., offering 750+ predefined policies to detect security
and compliance issues. Custom policies can also be created and contributed.

Benefits of Pre‑Deployment Policy Compliance with Policy as Code Frameworks

Policy as code frameworks automate compliance checks, reducing the need for manual validation.
This ensures that compliance checks are consistently applied to all code changes and configura‑
tions.

By integrating policy as code frameworks into CI/CD pipelines, compliance checks are shifted left, en‑
abling early identification and resolution of policy violations. This reduces the risk of non‑compliant
code being deployed to production.

Policy as code frameworks allow organizations to continuously monitor compliance throughout the
development lifecycle. As code changes are made, policies are reevaluated, ensuring ongoing adher‑
ence to policies.

Early detection and resolution of compliance issues lead to faster deployments. Organizations can
confidently deploy code knowing that it adheres to all relevant policies, reducing the time required
for regulatory reviews.

Abhishek Tiwari 10.59350/ngt0n-5dm13 2023‑07‑23

https://doi.org/10.59350/ngt0n-5dm13

Pre‑Deployment Policy Compliance 3

Real‑Life Examples of Pre‑Deployment Policy Compliance

Let’s explore real‑life examples of howorganizations have successfully implemented pre‑deployment
policy compliance using various policy as code frameworks:

Sentinel for Infrastructure as Code

A cloud service provider uses Terraform for infrastructure provisioning. To ensure adherence to se‑
curity and compliance requirements, they employ Sentinel policies to validate Terraform configura‑
tions.

Sentinel policies are written to enforce rules such as:

• Requiring encryption for all Amazon S3 buckets and Azure Blob Storage containers.
• Restricting access to specific AWS services based on defined IAM roles.
• Ensuring that security groups restrict inbound traffic to approved ports.

By leveraging Sentinel to validate Terraform configurations, the cloud service provider guarantees
that their infrastructure deployments meet the organization’s stringent security standards.

Open Policy Agent (OPA) for Kubernetes Policies

A technology company manages a Kubernetes cluster to deploy microservices. To enforce best prac‑
tices and security measures, they implement OPA as an admission controller for Kubernetes.

OPA policies are written in Rego to enforce rules such as:

• Ensuring all images come from a trusted registry
• Ensuring that pods are assigned to specific namespaces with appropriate labels.
• Enforcing resource limits and requests for CPU andmemory usage.

With OPA as an admission controller, the technology company enforces policy compliance for all Ku‑
bernetes resources, safeguarding against unauthorized deployments and potential security risks.

package kubernetes.admission

import future.keywords

deny contains msg if {
input.request.kind.kind == "Pod"
some container in input.request.object.spec.containers
image := container.image
not startswith(image, "docker.com/")

Abhishek Tiwari 10.59350/ngt0n-5dm13 2023‑07‑23

https://doi.org/10.59350/ngt0n-5dm13

Pre‑Deployment Policy Compliance 4

msg := sprintf("image '%s' comes from untrusted registry", [image])
}

Conftest for Configuration Compliance

A DevOps team manages a Kubernetes cluster and Helm charts for deploying microservices. To en‑
sure consistent configurations across deployments, they utilize Conftest to validate Helm charts and
Kubernetes manifests.

Conftest policies are written to enforce rules such as:

• Verifying thatall Kubernetesdeploymentshave resource limitsdefined toprevent resourceover‑
utilization.

• Enforcing the use of specific labels and annotations for service discovery andmonitoring.
• Validating that Helm charts use the correct release names and namespaces.

By integrating Conftest into their CI/CD pipeline, the DevOps team ensures that all deployments
adhere to predefined configuration policies, promoting consistency and reducing the likelihood of
configuration‑related issues.

Checkov for Terraform Compliance

A cloud‑native startup leverages Terraform to provision cloud infrastructure on multiple cloud plat‑
forms. To maintain security and compliance across their infrastructure code, they integrate Checkov
into their CI/CD pipeline.

Checkov provides out‑of‑the‑box checks for Terraform configurations, such as:

• Ensuring that S3 buckets have server‑side encryption enabled.
• Verifying that security groups have restrictive inbound rules to minimize exposure.
• Ensuring that new RDS services spun‑up are encrypted at rest

By running Checkov during their CI/CD process, the startup gains confidence that their Terraform con‑
figurations comply with industry best practices and organizational policies.

from checkov.common.models.enums import CheckResult, CheckCategories
from checkov.terraform.checks.resource.base_resource_check import

BaseResourceCheck

class RDSEncryption(BaseResourceCheck):
def __init__(self) -> None:

Abhishek Tiwari 10.59350/ngt0n-5dm13 2023‑07‑23

https://doi.org/10.59350/ngt0n-5dm13

Pre‑Deployment Policy Compliance 5

name = "Ensure all data stored in the RDS is securely encrypted at
rest"

id = "CKV_AWS_16"
supported_resources = ("aws_db_instance",)
categories = (CheckCategories.ENCRYPTION,)
super().__init__(name=name, id=id, categories=categories,

supported_resources=supported_resources)

def scan_resource_conf(self, conf: dict[str, list[Any]]) ->
CheckResult:

"""
Looks for encryption configuration at aws_db_instance:
https://www.terraform.io/docs/providers/aws/d/db_instance.html

:param conf: aws_db_instance configuration
:return: <CheckResult>
"""
if 'storage_encrypted' in conf.keys():

key = conf['storage_encrypted'][0]
if key:

return CheckResult.PASSED
return CheckResult.FAILED

terraform‑compliance for AWS Compliance

A financial services company manages a complex AWS infrastructure. To ensure compliance with in‑
ternal security policies and AWS best practices, they utilize terraform‑compliance as part of their de‑
ployment process.

terraform‑compliance policies are written to enforce requirements such as:

• Requiring all AWS EC2 instances to be launched within a specified VPC.
• Verifying that AWS RDS instances have backup and retention policies in place.
• Well‑known insecure protocol exposure on Public Network for ingress traffic

By integrating terraform‑compliance into their CI/CDpipeline, the financial services company ensures
that their AWS infrastructure adheres to predefined compliance standards.

Scenario Outline: Well-known insecure protocol exposure on Public Network
for ingress traffic
Given I have AWS Security Group defined
When it has ingress
Then it must have ingress
Then it must not have <proto> protocol and port <portNumber> for

0.0.0.0/0

Abhishek Tiwari 10.59350/ngt0n-5dm13 2023‑07‑23

https://doi.org/10.59350/ngt0n-5dm13

Pre‑Deployment Policy Compliance 6

Examples:
ProtocolName	proto	portNumber
HTTP	tcp	443
Telnet	tcp	23
SSH	tcp	22
MySQL	tcp	3306
MSSQL	tcp	1443
NetBIOS	tcp	139
RDP	tcp	3389
Jenkins Slave	tcp	50000

Conclusion

Pre‑deployment policy compliance, along with the adoption of policy as code frameworks has be‑
come essential for ensuring secure and compliant software deployments. By integrating compliance
checks early in the development process, organizations can mitigate security risks, reduce rework,
and demonstrate adherence to regulations and policies. As the software development landscape con‑
tinues to evolve, pre‑deployment policy compliance will remain a key strategy for organizations aim‑
ing to deliver secure, compliant, and high‑quality software solutions tomeet the demands ofmodern
development practices.

Abhishek Tiwari 10.59350/ngt0n-5dm13 2023‑07‑23

https://doi.org/10.59350/ngt0n-5dm13

	Understanding Pre-Deployment Policy Compliance
	Policy as Code Frameworks: Enabling Pre-Deployment Policy Compliance
	Benefits of Pre-Deployment Policy Compliance with Policy as Code Frameworks
	Real-Life Examples of Pre-Deployment Policy Compliance
	Sentinel for Infrastructure as Code
	Open Policy Agent (OPA) for Kubernetes Policies
	Conftest for Configuration Compliance
	Checkov for Terraform Compliance
	terraform-compliance for AWS Compliance

	Conclusion

