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In 1982, AndrewYaoproposed theMillionaireProblemwhichdiscusseshow twomillionaires can learn
who is richest onewithout disclosing their actual wealth. They solve this problem by comparing their
wealth using secure two party computation to ensure that they learn only the richest one and nothing
else is revealed. The problem was later generalised for secure multiparty computation by Goldreich
et al in 1987.

Privacy Preserving Measurement (PPM) can be considered as an extension of Millionaire problem.
PPM refers to a set of techniques and protocols that allow useful statistics and insights to be derived
from data without exposing individual‑level information. When combined with formal privacy guar‑
antees like differential privacy, PPM enables organizations to perform analytics and measurement in
a privacy‑preserving manner.

In this post, we’ll explore the key concepts behind PPM, how it works in practice, and how differen‑
tial privacy enhances its privacy protections. We’ll also look at some real‑world applications and the
future potential of this technology.

Need

Traditional approaches to data analytics typically involve collecting rawuser data in a central location
for processing. This creates a variety of privacy and security risks. Sensitive personal information
could be exposed in a data breach. Insiders with access to the data could misuse it. The centralized
data set becomes an attractive target for hackers. Users have limited visibility into how their data is
being used. It’s difficult to prevent the data from being repurposed for unintended uses.

PPM aims to enable useful measurement and analytics while avoiding these pitfalls. The core idea is
to structure data collection and processing in a way that useful aggregate insights can be extracted
without needing access to individual‑level data. PPMallows aggregate statistics to be computedwith‑
out exposing raw user data, preventing the linking of data points to specific individuals, giving users
more control over how their data is used, reducing the security risks associated with centralised data
collection, and enabling privacy‑preserving collaboration betweenmultiple parties.

Key Concepts

A few core concepts and techniques form the foundation of PPMmodel.

SecureMulti‑Party Computation (MPC): This refers to cryptographic protocols that allowmultiple par‑
ties to jointly compute a function over their private inputs, without revealing those inputs to each
other. In the context of PPM, MPC allows multiple data holders to collaborate on computing aggre‑
gate statistics without sharing raw data. MPC should ensure the following two properties : (i) input
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privacy, i.e., parties’ inputs should remain private and only the output of the function is learned; and
(ii) correctness, i.e., even if some parties maliciously act, the correct output is obtained.

Figure 1: Let P1, . . . , Pn be n parties and each of them having input x1, . . . , xn, respectively. These
parties want to jointly compute function F over all inputs {x1,…,xn} and learn the output without
revealing their input. Image credits Beyza Bozdemir

Homomorphic Encryption: This is a form of encryption that allows computations to be performed on
encrypted data without decrypting it first. It enables a party to perform analytics on encrypted user
data without accessing the underlying plaintext.
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Figure 2: Alice can delegate some of her computations over sensitive data to an untrusted third
party, Bob. Alice encrypts her data with her public key (in green) and sends it to Bob. When receiving
the data, Bob can evaluate a function over Alice’s encrypted inputs and obtain the encrypted result.
Bob sends the result back to Alice who is the only party able to decrypt it with her private (or secret)
key (in red). Image credits Beyza Bozdemir.

Secure Aggregation: This refers to techniques for combining inputs from multiple parties in an en‑
crypted or cryptographically secure way, such that only the final aggregate result is revealed.

Distributed Noise Addition: Methods for having multiple parties collaboratively add statistical noise
to results in a distributed fashion, enabling differential privacy without a trusted central party.

Cryptographic Commitments: Techniques that allow a party to commit to a piece of data or computa‑
tion result without revealing it, and later prove that they computed it correctly.

By leveraging these cryptograph primitives, PPMprotocols can be constructed to performusefulmea‑
surement tasks in a privacy‑preserving manner.

Distributed Aggregation Protocol

One of the most promising standardised approaches for PPM is the Distributed Aggregation Protocol
(DAP) being developed by the IETF Privacy Preserving Measurement working group. DAP provides
a framework for privacy‑preserving data collection and aggregation across a large number of client
devices.
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DAP Roles

DAP defines several key roles that work together to enable privacy‑preserving measurement. The
primary roles in DAP are:

1. Clients: These are typically end‑user devices (like smartphones or browsers) that generate the
original measurement data. Clients encrypt their data and split it into shares before sending it
to the Aggregators.

2. Aggregators: DAP requires at least two non‑colluding Aggregator servers. These servers receive
encrypted shares from Clients and perform secure multi‑party computation to aggregate the
data without seeing individual values. DAP defines two specific Aggregator roles:

• Leader: This Aggregator coordinates the protocol execution, interactswith Clients and the
Collector, and orchestrates the aggregation process.

• Helper: This Aggregator assists the Leader in the computation but has more limited re‑
sponsibilities.

3. Collector: This is the entity that initiates measurement tasks and receives the final aggregated,
privacy‑preserving results. The Collector defines queries but does not have access to individual
Client data.

Each of these roles plays a crucial part in ensuring that useful aggregate data can be collected and
analyzed while strongly protecting individual privacy. The separation of roles and the requirement
for multiple non‑colluding parties are key to DAP’s privacy guarantees.

Abhishek Tiwari 10.59350/fnpfz-3v466 2024‑10‑01

https://doi.org/10.59350/fnpfz-3v466


Privacy Preserving Measurement 5

Helper

Client

Client Leader Collector

Client

Helper

Figure 3: DAP Roles ‑ Clients generate the original measurement data, Aggregators participate in
multi‑party aggregation, and Collector receives the final aggregated, privacy‑preserving results.

HowDAPworks

The protocol begins with Clients generating measurements based on some predefined task. Instead
of sending these measurements directly, each Client uses a cryptographic technique to split its mea‑
surement into multiple “input shares.” These shares are encrypted in such a way that no single party
can reconstruct the original measurement from a share alone. The encrypted input shares are then
sent to the Leader Aggregator.

Upon receiving the encrypted input shares, the Leader Aggregator doesn’t attempt to decrypt them
directly. Instead, it distributes the shares between itself and the Helper Aggregator. This distribution
of shares is a critical aspect of DAP’s privacy guarantees, as it ensures that no single Aggregator has
access to a complete measurement.
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The heart of DAP’s functionality lies in its use of Verifiable Distributed Aggregation Functions (VDAFs).
VDAFs are cryptographic protocols that allow the Aggregators to jointly process the input shares with‑
out ever seeing the underlying data in the clear. VDAFs serve two crucial purposes in DAP. First, they
enable the Aggregators to verify that eachmeasurement is valid according to predefined criteria, with‑
out actually seeing themeasurement itself. This is essential for ensuring the integrity of the aggregate
result without compromising individual privacy. Second, VDAFs allow the Aggregators to transform
the input shares into “output shares” that can be aggregated to produce the final result.

VDAFs work by having each Aggregator perform part of a computation on its share of the data. These
partial computations are then combined in a way that produces the correct result as if the compu‑
tation had been performed on the complete, unencrypted data. Importantly, this process reveals
nothing about individual measurements to either Aggregator. The VDAF used in a particular DAP de‑
ployment is chosen based on the specific type of measurement and aggregation required.

The aggregation process in DAP is organized around the concept of “batches.” A batch is a set of
reports (i.e., measurements) that are aggregated together. The protocol supports different types of
queries that determine how these batches are formed. For example, time‑interval queries group re‑
ports based on when they were generated, while fixed‑size queries aim to create batches with a spe‑
cific number of reports. The use of batches, combined with minimum batch size requirements, pro‑
vides an additional layer of privacy protection by ensuring that individual measurements are always
aggregated with a sufficient number of other measurements.

When the Collector wishes to obtain an aggregate result, it initiates the collection process by sending
a query to the Leader Aggregator. This query specifies which batch of measurements should be ag‑
gregated and any necessary parameters for the aggregation. The Leader andHelper Aggregators then
work together to compute “aggregate shares” based on the output shares they hold for the specified
batch. These aggregate shares are encrypted and sent to the Collector.

Finally, the Collector receives the encrypted aggregate shares from both Aggregators. By combining
these shares, the Collector is able to compute the final aggregate result. Importantly, this process re‑
veals only the aggregate statistic to the Collector, without exposing any information about individual
measurements.

DAP incorporates several additional features to enhance its security and flexibility. It supports exten‑
sions that allow for client authentication or the inclusion of additional metadata withmeasurements.
The protocol also includes mechanisms for detecting and preventing various attacks, such as replay
attacks or attempts to submit invalid measurements.

This approach has several key benefits. Raw user data is never visible to the aggregators or data col‑
lector. No single party has access to individual reports. The system is scalable to millions of clients.
DAP supports various aggregation functions beyond simple sums, including histograms and complex
statistics, by adjusting the client‑side encoding and server‑side aggregation logic.
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Figure 4: Each Client generates input shares from its measurement and distributes them among the
Aggregators. (2) Each Aggregator converts each input share into an output share compatible with the
aggregation function. This computation involves the aggregation parameter. Each Aggregator
combines a sequence of output shares into its aggregate share and sends the aggregate share to the
Collector. The Collector combines the aggregate shares into the aggregate result.

Prio

DAP has its roots in the Prio system, which was introduced in 2017 by Henry Corrigan‑Gibbs and Dan
Boneh from Stanford University. Prio, short for “Privacy‑Preserving Aggregation of Randomized In‑
puts and Outputs,” was designed as a privacy‑preserving system for computing aggregate statistics
over user data. It introduced the concept of secret‑sharing client data among multiple servers and
using zero‑knowledge proofs to validate inputs without revealing individual data points. DAP builds
upon and extends the ideas presented in Prio, incorporating improvements and optimizations devel‑
oped in subsequent research. For instance, DAP utilizes VDAFs, which include an enhanced version
of Prio called Prio3. This evolution from Prio to DAP represents a significant advancement in privacy‑
preservingmeasurement techniques,moving fromacademic research toamorecomprehensive, stan‑
dardized protocol suitable for wide‑scale deployment.
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Distributed Differential Privacy (DP)

While not a core part of the protocol, DAP is designed to be compatible with differential privacy tech‑
niques, which can provide additional protection against inference attacks on the aggregate results.
The DAP protocol supports a distributed DP approach where the aggregator servers collaboratively
add noise to results. This fits well with DAP’s multi‑party computation model. Unlike Local DP or
Central DP, in Distributed DP multiple non‑colluding parties collaborate to add noise in a distributed
fashion. This balances privacy and utility without requiring a fully trusted party. Since each Aggrega‑
tor is adding noise independently, privacy can be guaranteed even if all but one of the Aggregators is
malicious.

Non‑Collusion Assumption

DAP’s privacy guarantees rely on at least one aggregator being honest. As long as at least one of them
executes the protocol honestly no input is ever seen in the clear by any aggregator. As long as the
Leader and Helper don’t collude, individual measurements remain private.

Adoption

PPM techniques are seeing increasing adoption across various domains, with major tech companies
leading the way in implementing these privacy‑enhancing technologies.

Cloudflare’s Daphne Project

Cloudflare has been at the forefront of PPM development with their Daphne project, an open‑source
implementation of a Distributed Aggregation Protocol (DAP) aggregator server. Daphne is designed
to work as part of a two‑party system, currently implementing the DAP Helper role.

Mozilla Firefox Telemetry

Mozilla has been exploring PPM techniques for collecting browser telemetry data. One potential
application is privately aggregating and reporting client‑side connection errors to an origin. This
use case for DAP allows Mozilla to collect aggregate statistics about network errors (e.g., number
of tcp.timed_out errors for a particular domain) without revealing sensitive information about
individual users’ browsing habits.
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Google and Apple’s COVID‑19 Exposure Notifications

During heights of COVID‑19, Google and Apple collaborated on the Exposure Notifications System
(ENS) to enable automated COVID‑19 exposure alerts while maintaining strong privacy guarantees.
They further enhanced this system with Exposure Notification Privacy‑preserving Analytics (ENPA),
which allows public health authorities (PHA) to collect aggregate metrics without compromising in‑
dividual privacy. ENPA uses multi‑party computation to distribute the aggregation process across
multiple servers, applies local differential privacy on user devices before data submission, and follow
a rigorous cryptographic protocol ensuring that even Apple and Google cannot see individual contri‑
butions.

ENPA demonstrates how PPM can be applied to sensitive health data, enabling crucial public health
insights while respecting individual privacy.

Figure 5: Each client adds local noise to its input value, then splits it into two cryptographic shares
and computes a distributed zero‑ knowledge range proof for the value that is shared. The client
encrypts one of the shares and the correspond‑ ing proof part under the public key of the PHA, and
the other share and proof part under the public key of the Helper server. The client sends the
resulting ciphertexts to the ingestion server, accompanied with an attestation (i.e., a device‑specific
cryptographic proof) of being a legitimate device.

Mozilla Firefox: Private Ad Attribution

In addition to telemetry data collection, Mozilla has been exploring privacy‑preserving methods for
adattribution. They’vebeenworkingonaPrivateAttributionAPI that aims toprovideadvertiserswith
conversion datawithout compromising user privacy. This systembuilds upon the concepts of Privacy
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Preserving Measurement (PPM) and relies on differential privacy to provide a privacy guarantee that
holds even if sites are malicious and attempt to abuse the API.

Mozilla’s Private Attribution API involves multi‑party computation which includes clients (user de‑
vices), aggregators, and a collector (the entity receiving the final aggregate data). User devices split
their measurement data into secret shares, which are then encrypted and sent to different aggrega‑
tors. To achieve differential privacy, noise is added to the aggregate results in a distributed manner
by the aggregators. The system includes mechanisms to manage privacy budgets across different
queries and advertisers.

Cloudflare: Making Network Error Logging Private with DAP and DP

Cloudflare has been exploring the use of the Distributed Aggregation Protocol (DAP) in combination
with Differential Privacy (DP) to make Network Error Logging (NEL) private. This use case demon‑
strates how PPM techniques can be applied to improve existing web technologies.

Figure 6: Aggregator Randomization. Image credits Cloudflare.

The systemworks as follows:

1. Client‑side error logging: When a client encounters a network error, instead of sending a de‑
tailed error report directly to the origin server, it prepares a privacy‑preserving report.

2. Report encryption: The client encrypts the report using theDAPprotocol, splitting it into shares
for multiple aggregators.

3. Secure aggregation: The encrypted reports are sent to Cloudflare’s Daphne servers, which act
as aggregators. These servers performsecuremulti‑party computation to aggregate the reports
without seeing individual values.
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4. Differential privacy: Noise is added to the aggregate results to achieve differential privacy.
Cloudflare implements this using a distributed noise addition technique, where multiple
non‑colluding parties collaboratively add noise.

5. Histogram generation: The system produces differentially private histograms of error types, al‑
lowing website owners to understand common network issues without compromising individ‑
ual user privacy.

Key considerations in this implementation include:

1. Privacy budgetmanagement: Cloudflare carefullymanages the privacy budget (ε) across differ‑
ent types of queries and time periods.

2. Batch sizeoptimization: The system isdesigned tobalanceprivacyandutilitybyadjustingbatch
sizes for aggregation.

3. Error typeencoding: Network errors are encoded intoa fixed set of categories to enable efficient
histogram generation.

4. Timestamp precision: Report timestamps are rounded to reduce the risk of timing‑based at‑
tacks while still providing useful temporal data.

This approach allows Cloudflare to provide valuable insights to website owners about network errors
affecting their users, while strongly protecting individual user privacy. It showcases how existingweb
infrastructure can be enhanced with state‑of‑the‑art privacy‑preserving techniques.

By implementing DAP with differential privacy for NEL, Cloudflare demonstrates a practical applica‑
tion of PPM that could serve as amodel for privacy‑enhancing other types of webmeasurements and
analytics.

Conclusion

The development of DAP has been driven by collaboration between researchers, technology compa‑
nies, and standardization bodies, aiming to create a robust and flexible system that can be applied to
various real‑world privacy‑sensitive data collection scenarios.

While PPMhasmade good progress, there are still challenges to overcome: performance and scalabil‑
ity for complex computations, balancing privacy and utility for different applications, standardising
protocols and APIs for interoperability, and educating users and organisations on the benefits and
limitations.

Research is ongoing in areas like more efficient secure multi‑party computation protocols, advanced
composition techniques for differential privacy, PPM‑friendly machine learning and AI techniques,
and verifiable computation to ensure protocol compliance.
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