
Reflections on Apache Drill

Abhishek Tiwari

Citation: A. Tiwari, ”Reflections on Apache Drill”, Abhishek Tiwari, 2015.
doi:10.59350/q22bq-ekh76

Published on: September 29, 2015

https://orcid.org/0000-0003-2222-2395
https://doi.org/10.59350/q22bq-ekh76

Reflections on Apache Drill 1

I have been playing with Apache Drill for quite some time now. In layman’s terms, Apache Drill is
SQL query engine which can perform queries against any type of data store ‑ in particular any non‑
relational data store. Apache Drill’s ability to query against raw data files stored on the cloud storage
platforms such as Amazon S3, Azure Blob Storage, Google Cloud Storage makes it a really attractive
and cost effective query engine. Using Apache Drill one can get faster insights without requiring up‑
front schema knowledge or without loading the data in the relational data store.

Self‑describing data formats

Apache Drill is particularly useful for the self‑describing data formats such as JSON and Parquet. With
self‑describing data formats, data itself implies its schema or structure. It is important to note self‑
describing data structure can constantly evolve such as dynamic or nested JSON. So one can fre‑
quently add and remove fields to data set without affecting Drill’s ability to query against the data.

Apache Parquet

A single query in Drill can join data frommultiple data stores. For example, you can join a user profile
data inMongoDBwith a directory ofweb activity logs stored onAmazonS3. Then you canwrite joined
data as Parquet file to an Amazon S3 or a local file system.

Parquet is a self‑describing columnar data format. Parquet helps Apache Drill to optimize query per‑
formance and minimize I/O by enabling the column storage, data compression, data encoding and
data distribution (related values in close proximity). When a read of Parquet data occurs, Drill loads
only the necessary columns of data, which reduces I/O. To perform efficient querying on a large num‑
ber of files, latest version of Drill can take advantage of the metadata cache feature in for the query
planning. Apache Drill will generate and save a metadata cache in each directory in nested directo‑
ries.

Let’s take a test ride

We are going to perform SQL queries on data in Amazon S3 storage using Apache Drill.

• First download the latest version of Apache Drill and install it. You can install Drill in either em‑
beddedmode (standalone instance) or distributedmode (clustered Hadoop environment). For
nowwe are going to install Drill in standalonemode as described here. You can start Drill in em‑
beddedmodebynavigating to theDrill$DRILL_HOME/bindirectory and then issuingdrill
-embedded command to start the Drill shell.

• Next install the JetS3t which is a free, open‑source Java toolkit to interact with Amazon S3,

Abhishek Tiwari 10.59350/q22bq-ekh76 2015‑09‑29

https://drill.apache.org/docs/installing-drill-in-embedded-mode/
https://doi.org/10.59350/q22bq-ekh76

Reflections on Apache Drill 2

wget http://bitbucket.org/jmurty/jets3t/downloads/jets3t-0.9.3.zip
unizp jets3t-0.9.3.zip
cp jets3t-0.9.2/jars/jets3t-0.9.3.jar $DRILL_HOME/jars/3rdparty

Let’s enable the JetS3t plugin by editing the $DRILL_HOME/bin/hadoop-excludes.txt file
and removing the line jets3t. Please also remove parquet from this file as we are going to use
Parquet module.

• Now add a core-site.xml file in the $DRILL_HOME/conf/ with the following configura‑
tion. Please replace placeholder values in the configuration file with appropriate AWS API keys.
This configuration is requiredbyJetS3t to interactwith theAmazonS3buckets to readandwrite
the stored files.

<?xml version="1.0" encoding="UTF-8" ?>
<configuration>
<property>
<name>fs.s3.awsAccessKeyId</name>
<value>ACCESS KEY</value>

</property>

<property>
<name>fs.s3.awsSecretAccessKey</name>
<value>SECRET KEY</value>

</property>

<property>
<name>fs.s3n.awsAccessKeyId</name>
<value>ACCESS KEY</value>

</property>

<property>
<name>fs.s3n.awsSecretAccessKey</name>
<value>SECRET KEY</value>

</property>
</configuration>

• ForAmazonS3bucket, youshouldaddastorageplugin configurationbyvisiting theApacheDrill
admin interface on http://localhost:8047/storage. I am using the following config‑
uration for my S3 setup. If you are using below configuration, please ensure that you update
the placeholder field bucket-name along with workspaces root and out. Please note that
workspace out is the folder in the bucket where I would write the results because root is not
writable as described in the configuration.

{
"type": "file",
"enabled": true,

Abhishek Tiwari 10.59350/q22bq-ekh76 2015‑09‑29

https://doi.org/10.59350/q22bq-ekh76

Reflections on Apache Drill 3

"connection": "s3n://<bucket-name>",
"workspaces": {

"root": {
"location": "/",
"writable": false,
"defaultInputFormat": null

},
"out": {

"location": "/out",
"writable": true,
"defaultInputFormat": null

}
},
"formats": {

"psv": {
"type": "text",
"extensions": [

"tbl"
],
"skipFirstLine": true,
"delimiter": "|"

},
"csv": {

"type": "text",
"extensions": [

"csv"
],
"skipFirstLine": true,
"delimiter": ","

},
"tsv": {

"type": "text",
"extensions": [

"tsv"
],
"skipFirstLine": true,
"delimiter": "\t"

},
"tlsv": {

"type": "text",
"extensions": [

"tilda"
],
"skipFirstLine": true,
"delimiter": "~"

},
"parquet": {

"type": "parquet"
},
"json": {

"type": "json"

Abhishek Tiwari 10.59350/q22bq-ekh76 2015‑09‑29

https://doi.org/10.59350/q22bq-ekh76

Reflections on Apache Drill 4

},
"avro": {

"type": "avro"
}

}
}

• Perform queries against files in your Amazon S3 bucket. Drill supports the ANSI standard for
SQL.

SELECT * from `s3`.`customer.csv` limit 10;

Figure 1: Apache Drill sample query‑1

SELECT columns[0] as FirstName, columns[1] as LastName, columns[2] as
Email FROM `s3`.`customer.csv`;

Figure 2: Apache Drill sample query‑2

Now, write the data which you queried from Amazon S3 files as Parquet files back to your bucket but
this time in a different folder out,

ALTER SESSION SET `store.format` = 'parquet';

Abhishek Tiwari 10.59350/q22bq-ekh76 2015‑09‑29

https://doi.org/10.59350/q22bq-ekh76

Reflections on Apache Drill 5

CREATE TABLE `s3.out`.`customer_as_parquet` AS (SELECT columns[0] as
FirstName, columns[1] as LastName, columns[2] as Email FROM `s3`.`
customer.csv`);

SELECT * FROM `s3.out`.`customer_as_parquet`;

Figure 3: Apache Drill sample query‑3

Let’s join the customer details with order data which is stored in JSON format.

SELECT * FROM `s3`.`order.json`;

Figure 4: Apache Drill sample query‑4

And here you have it ‑ a Drill query running aginst two different data stores ‑ one JSON another Par‑
quet.

select customer.FirstName, customer.LastName, customer_order.OrderID,
customer_order.OrderValue

FROM `s3.out`.`customer_as_parquet` as customer

Abhishek Tiwari 10.59350/q22bq-ekh76 2015‑09‑29

https://doi.org/10.59350/q22bq-ekh76

Reflections on Apache Drill 6

INNER join `s3`.`order.json` as customer_order
on customer.Email=customer_order.CustomerEmail;

Conclusion

As you can see how easy it is to performqueries against the raw data files in the cloud storage buckets
such as Amazon S3. Drill enabled us to treat our data like a table even when it’s not.

Abhishek Tiwari 10.59350/q22bq-ekh76 2015‑09‑29

https://doi.org/10.59350/q22bq-ekh76

	Self-describing data formats
	Apache Parquet
	Let’s take a test ride
	Conclusion

