
Requirements for stream processing
architecture

Abhishek Tiwari
 

 

Citation: A. Tiwari, ”Requirements for stream processing architecture”,
Abhishek Tiwari, 2015. doi:10.59350/9b166-ek913

Published on: May 06, 2015

https://orcid.org/0000-0003-2222-2395
https://doi.org/10.59350/9b166-ek913


Requirements for stream processing architecture 1

In 2005 Stonebraker et al. published a paper that outlined 8 key requirements for stream processing
architecture. These key requirements can be easily translated into building blocks of stream process‑
ing architecture. Although, this article dates before systems such as Apache Kafka, Amazon Kinesis,
Apache Spark, Apache Storm, etc. most of the requirements are still relevant.

Rule 1: Keep the datamoving,

A stream processing architecture is like a data pipeline. Data moves from one stream to another,
streams are branched, streams are merged but data keep moving. Storage operation are costly only
performed when data is enriched and processed.

processmessages “in‑stream”, without any requirement to store them to perform any operation
or sequence of operations. Ideally the system should also use an active (i.e., non‑polling) pro‑
cessing model.

Rule 2: Query using SQL on streams

A streamprocessing architecture should support a queryingmechanism to filter out events of interest
or compute real‑time analytics.

support a high‑level “StreamSQL” language with built‑in extensible stream oriented primitives
and operators.

Rule 3: Handle stream imperfections

Astreamprocessingarchitecture shouldhandledelayed,missingandout‑of‑orderdata ‑ i.e. straggling
records. This can be typically achieved by user‑defined watermarks and straggler‑handlers.

built‑inmechanisms to provide resiliency against stream “imperfections”, includingmissing and
out‑of‑order data, which are commonly present in real‑world data streams.

Rule 4: Generate predictable outcomes

A stream processing architecture should yield the same outcome when an input stream is replayed
and reprocessed. Due to the distributed nature of stream architecture, although ordering can not be
guaranteed but exactly‑once delivery certainly guaranteed.

Abhishek Tiwari 10.59350/9b166-ek913 2015‑05‑06

http://dl.acm.org/citation.cfm?id=1107504
http://dl.acm.org/citation.cfm?id=1107504
https://doi.org/10.59350/9b166-ek913


Requirements for stream processing architecture 2

must guarantee predictable and repeatable outcomes

Rule 5: Integrate stored and streaming data

A streamprocessing architecturemust also provide ability integrate the historical data (“batch layer”)
with streaming data (“speed layer”) ‑ i.e. something lambda architecture with .

have the capability to efficiently store, access, andmodify state information, and combine itwith
live streaming data. For seamless integration, the system should use a uniform language when
dealing with either type of data.

Rule 6: Guarantee data safety and availability

A stream processing architecture should ensure high‑availability (HA) using a fault tolerance mecha‑
nism. Typically, replication across multiple nodes enhances the durability and availability.

ensure that the applications are up and available, and the integrity of the data maintained at all
times, despite failures.

Rule 7: Partition and auto‑scale

A stream processing architecturemust scale horizontal by utilising shards and using partition keys to
distribute load across shards. In addition, number of shards and shard capacity should automatically
scale.

have the capability to distribute processing acrossmultiple processors andmachines to achieve
incremental scalability. Ideally, the distribution should be automatic and transparent.

Rule 8: Process and respond instantaneously

A stream processing architecture as a whole must support high‑throughput with very low latency.

have a highly‑optimized, minimal‑overhead execution engine to deliver real‑time response for
high‑volume applications

Abhishek Tiwari 10.59350/9b166-ek913 2015‑05‑06

https://doi.org/10.59350/9b166-ek913

	Rule 1: Keep the data moving,
	Rule 2: Query using SQL on streams
	Rule 3: Handle stream imperfections
	Rule 4: Generate predictable outcomes
	Rule 5: Integrate stored and streaming data
	Rule 6: Guarantee data safety and availability
	Rule 7: Partition and auto-scale
	Rule 8: Process and respond instantaneously

