
Statamic with Varnish for a
high‑performance website

Abhishek Tiwari

Citation: A. Tiwari, ”Statamic with Varnish for a high‑performance
website”, Abhishek Tiwari, 2014. doi:10.59350/dqcj5-aa022

Published on: June 22, 2014

https://orcid.org/0000-0003-2222-2395
https://doi.org/10.59350/dqcj5-aa022

Statamic with Varnish for a high‑performance website 1

So you got your website up and running using Statamic. For better performance you have enabled,

• Statamic rendered‑HTML caching.
• Cache‑Control header for all static assets
• Gzip compression at web server level

Basically, Statamic rendered‑HTML caching stores the entire rendered HTML page and by enabling it
you can cut downpage‑load timebyup to 90%~85%onaverage. You can turn it onby settingenable
to true in _config/bundles/html_caching/html_caching.yaml.

But, in some use cases youmay want additional performance gain on top of rendered‑HTML caching
or at least ability to handle high‑load conditions. That’s where Varnish comes handy. In addition to
serving content faster, on a decent server spec (like EC2 micro‑instance) Varnish can easily handle
1000‑2000 concurrent requests.

Varnish is a web application accelerator also known as a caching HTTP reverse proxy. This is a quick
rundown on how to enable Varnish for your Statamic installation. Please note that when Statamic
content is update approach describe here does not invalidate Varnish cache automatically. You will
need to invalidate cachemanually or use this varnish cache buster add‑on.

Setup

Here we are going to setup Varnish as reverse proxy for Apache as web server. Apache is used as web
server to serve Statamic content as discussed in this post.

• First install Varnish as root user,

apt-get install varnish

• Then update/etc/default/varnishusing followingDAEMON_OPTS. Here, we are saying
that

1. Varnish output will accessible at port 80 on IP address XYZ.XX.YY.ZZ
2. Varnish will use deafult.vclwith 256M RAM for in‑memory cache
3. Varnish will use 1 worker thread pool, maximum 1000 andminimum 100 threads for this pool

DAEMON_OPTS="-a XYZ.XX.YY.ZZ:80 \
-T localhost:6082 \
-f /etc/varnish/default.vcl \
-S /etc/varnish/secret \
-s malloc,256m \
-p thread_pool_max=1000 \
-p thread_pools=1 \
-p thread_pool_min=100 \

Abhishek Tiwari 10.59350/dqcj5-aa022 2014‑06‑22

http://abhishek-tiwari.com/hacking/installing-statamic
http://abhishek-tiwari.com/hacking/varnish-cache-buster-add-on-for-statamic
http://abhishek-tiwari.com/hacking/installing-statamic
https://doi.org/10.59350/dqcj5-aa022

Statamic with Varnish for a high‑performance website 2

-p thread_pool_add_delay=1 \"

• Update /etc/varnish/default.vcl with following. First directive enables both Varnish
and Apache backend running on port 80 but different IP addresses. In second, we added IP
address to to enable purge requests.

backend default {
.host = "127.0.0.1";
.port = "80";

}

acl purge {
Purge requests are only allowed from localhost.
"localhost";
"127.0.0.1"/24;
"XYZ.XX.YY.ZZ"/24;

}

• Edit /etc/apache2/ports.conf for VirtualHost name and port,

NameVirtualHost *:80
Listen 127.0.0.1:80

• Update /etc/varnish/default.vcl by adding following at the end. Let me explain key
sub‑routines in following snippet,

1. Invcl_fetchwe setberesp.ttldepending on file type/extension, this is how long Varnish
is gone keep individual page in cache.

2. In vcl_recvwe removed cookies from request except for the admin area, added conditional
purge based on IP address

3. In vcl_deliverwe added X‑Cache header with HIT or MISS

Issue purge when there is a cache hit for the purge request.
sub vcl_hit {
if (req.request == "PURGE") {

purge;
error 200 "Purged.";

}
}

Set the beresp.ttl
sub vcl_fetch {
if(req.url ~ "\.(jpg|jpeg|gif|png|ico|css|pdf|js)$") {

set beresp.ttl = 30d;
}
else {

set beresp.ttl = 2d;

Abhishek Tiwari 10.59350/dqcj5-aa022 2014‑06‑22

https://doi.org/10.59350/dqcj5-aa022

Statamic with Varnish for a high‑performance website 3

}
}

Issue a no-op purge when there is a cache miss for the purge request.
sub vcl_miss {
if (req.request == "PURGE") {

purge;
error 200 "Purged.";

}
}

sub vcl_recv {
Remove cookies from request
if (!(req.url ~ "^/admin.php/")) {

unset req.http.Cookie;
}
Verify the ACL for an incoming purge request and handle it.
if (req.request == "PURGE") {

if (!client.ip ~ purge) {
error 405 "Not allowed.";

}
return (lookup);

}
Verify the ACL for an incoming ban request and handle it.
if (req.request == "BAN") {

if (!client.ip ~ purge) {
Not from an allowed IP? Then die with an error.
error 405 "This IP is not allowed to send PURGE requests.";

}
ban("req.http.host == " +req.http.host+" && req.url ~ "+req.url+"$");
error 200 "Ban added";

}
Only cache responses to clients that support gzip. Most clients
do, and the cache holds much more if it stores gzipped responses.
if (req.http.Accept-Encoding !~ "gzip" || req.http.Accept-Encoding !~ "

deflate") {
return (pass);

}
}

Add HIT or MISS Header
sub vcl_deliver {
if (obj.hits > 0) {

set resp.http.X-Cache = "HIT";
} else {

set resp.http.X-Cache = "MISS";
}

}

• Append following to /etc/apache2/httpd.conf. This basically unsets the Statamic cook‑

Abhishek Tiwari 10.59350/dqcj5-aa022 2014‑06‑22

https://doi.org/10.59350/dqcj5-aa022

Statamic with Varnish for a high‑performance website 4

ies from response except for the admin area. This is required otherwise Varnish will not cache
pages with cookie and serve them directly from Statamic backend.

<LocationMatch "^(?!/admin)/[^/]+">
Header unset Set-Cookie
</LocationMatch>

• Now restart Varnish and Apache.

service varnish stop && service varnish start
service apache2 restart

• To purge cache associated with a particular URL (let say abhishek-tiwari.com/about)
run following from a white‑listed IP address,

curl -X PURGE abhishek-tiwari.com/about

Results

Using Blitz.io, I generated a rush of 29,259 requests in 60 seconds on this query URL using a load of
1‑1000 users.

• This rush generated 29,259 successful hits in 60 seconds and a total 196.30 MB data was trans‑
ferred.

• The average hit rate of 487.65/second translates to about 42,132,960 hits/day. The max hit rate
was: 966 hits per second.

• The average response time was 8 ms. The fastest response time was: 7 ms.

Figure 1: Blitz.io test results for Varnish powered Statamic, 29259 successful hits in 60 seconds

This is amassive improvementon topofHTMLcaching in termsof performanceaswell as concurrency
capable of delivering 42,132,960 hits/day.

Update I managed to run another Blitz.io test with load of 1‑3000 users with 43,041 successful hits in
30 seconds. The averagehit rate of 1,435/secondwhichmeans about 123,958,080hits/day. To achieve

Abhishek Tiwari 10.59350/dqcj5-aa022 2014‑06‑22

https://www.blitz.io
http://abhishek-tiwari.com/post/why-are-current-dam-offerings-so-uninspiring
https://doi.org/10.59350/dqcj5-aa022

Statamic with Varnish for a high‑performance website 5

this I changed the thread_pool_max to 3000 and it worked like charm.

Figure 2: Blitz.io test results for Varnish powered Statamic, 43,041 successful hits in 30 seconds

Abhishek Tiwari 10.59350/dqcj5-aa022 2014‑06‑22

https://doi.org/10.59350/dqcj5-aa022

	Setup
	Results

