
Stored Procedure as a Service
(SPaaS)

Abhishek Tiwari
 

 

Citation: A. Tiwari, ”Stored Procedure as a Service (SPaaS)”, Abhishek
Tiwari, 2016. doi:10.59350/bxfbd-ah658

Published on: October 08, 2016

https://orcid.org/0000-0003-2222-2395
https://doi.org/10.59350/bxfbd-ah658


Stored Procedure as a Service (SPaaS) 1

Functions as a service (FaaS) is an emerging pattern to build APIs andmicroservices at scale. You can
use various FaaS implementations such as AWS Lambda, Azure Functions, and Google Cloud Func‑
tions to build APIs ecosystem for your organisation. If you remove serverless requirements, stored
procedures can be considered as a variation of FaaS because they share similar traits and concerns.
Developing APIs against these stored procedures is generally considered as an anti‑pattern. But what
if you have a substantial investment in stored procedures (8‑12 years) andmost of your business logic
is embedded in storedprocedures. In this blogpost, Iwill discusshowyoucan leverageexisting stored
procedures to create a fast‑track API transformation program on top of your legacy systems.

Functions as a service (FaaS)

In Functions as a service (FaaS) pattern, stateless functions are exposed via API endpoints. A func‑
tion in FaaS is a self‑contained piece of reusable functionality and normally run in a serverless envi‑
ronment. These functions can be executed by events or API endpoints. They can read and write to
database or storage backend. Depending on the cloud provider, these functions can be written in
JavaScript, Java, Python, C#, etc.

Figure 1: FaaS Pattern

FaaS Concerns

Currently, most of FaaS implementations are vendor‑specific. Underlying serverless environments
are very different due to different function specifications, runtime constraints, and execution meth‑
ods adopted by cloud providers. In addition, tooling for FaaS continuous integration and continuous
delivery is in very early stage or non‑existence. Then we have monitoring, logging, and debugging

Abhishek Tiwari 10.59350/bxfbd-ah658 2016‑10‑08

https://doi.org/10.59350/bxfbd-ah658


Stored Procedure as a Service (SPaaS) 2

related issues. I am not going to even think about the lack of testing approaches, service discovery,
security gaps and startup latency.

Stored Procedures

Stored procedures are subroutine stored in the relational database data dictionary. These subrou‑
tines can be executed by applications accessing the database. Stored procedures are supported by
major relational databases such as Microsoft SQL Server, Oracle, PostgresSQL, MySQL, etc.

Figure 2: Executing stored procedures via an application to deliver data to a client UI in the browser.
Quite similar to MVC application exception the Model layer i.e. M is missing

Ugly

There are numerous articles on the web describing how stored procedures are bad and should be
avoided at all costs. I am generally in agreement with these concerns. In fact, I consider stored pro‑
cedures as an anti‑pattern, i.e. a good idea that quickly turned into massive technical debt. Most of
these technical debts were accumulated due to poor implementation and lack of continuous deliv‑
ery models. For instance, it will be difficult to test your applications if all or most of business logic is
implemented in stored procedures. Although it is possible to unit test stored procedures, often due
to the complexity of data logic unit tests are either very slow or not very effective as unit tests. In ad‑
dition, stored procedures share quite similar issues as FaaS pattern such as debugging, logging, and
versioning.

Bad

Several of these stored procedure concerns are caused by of inherent issues. For instance, Stored
procedures are highly procedural, you can’t pass objects which mean you need to deal with a huge
number of parameters which can be very painful. Stored procedures provide limited constructs when
compared to a full‑blown programming language. Similarly, vendor lock‑in or specific implementa‑
tion makes maintaining stored procedures even harder.

Abhishek Tiwari 10.59350/bxfbd-ah658 2016‑10‑08

https://doi.org/10.59350/bxfbd-ah658


Stored Procedure as a Service (SPaaS) 3

Figure 3: Stored procedure ‑ Good, Bad, and Ugly

Good

Moving data is harder thanmoving logic ‑ stored procedure bring logic close to data a honey trap used
often to justify the use of stored procedures. Using the stored procedures for very large database and
datawarehouses enablesone toavoid thenetwork round trip. In addition, because storedprocedures
are compiled and cached they generally offer better performance than dynamic SQL queries on large
data sets. Tobehonest, benefits of storedprocedure are not quite obvious unless youaredealingwith
a very large database or data warehouse ‑ one with billion rows or 5+ terabytes of data.

Legacy Monolith

Generally speaking, if you have a legacy system with large stored procedure footprint (1000+ stored
procedures) or your application is a data warehouse application pretending to be database applica‑
tion ‑ you have very limited options in fact only two options. This is particularly true if your applica‑
tions are thin (no orminimal business logic), your stored procedures are fat (heavy on business logic),
and your databases are very large strongly coupled, monoliths (billion rows and counting). Not to
mention, if you are constrained by time and resource ‑ delivery new products and services in a short
span which is typically the case in many large organisations.

Abhishek Tiwari 10.59350/bxfbd-ah658 2016‑10‑08

https://doi.org/10.59350/bxfbd-ah658


Stored Procedure as a Service (SPaaS) 4

Figure 4: A data pipeline built using stateful, strongly coupled, monolith databases. Database are
used as queue, ETL using StoredProc ‑ trigger calling StoredProc calling trigger is not that
uncommon

Phased Approach

To modernise your legacy systems irrespective of stored procedures involved or not, I always recom‑
mend a phased approach. In this journey, very first step requires decoupling of UI and backend. In
next phase, convert your legacy backend layer into an ecosystem of APIs. Finally, your team begins
breakingmonolithbackend intomicroservices ‑ oneat a timewhilemaintaining existingAPI contracts.
For legacy systems, an API‑first strategy makes more sense when compared to microservices first ap‑
proachmainly because your business can realise benefits early and frequently .

Figure 5: A phased approach for modernizing your legacy systems

Unless your business is considering to re‑build existing new applications as part of a multi‑year pro‑
gram, I will never suggest microservice first approach. Like it or not, system re‑build projects are al‑
ways overly underestimated due to complex and undocumented business logic developed over the

Abhishek Tiwari 10.59350/bxfbd-ah658 2016‑10‑08

https://doi.org/10.59350/bxfbd-ah658


Stored Procedure as a Service (SPaaS) 5

years. Plus, organisation are trapped into bastardise version of agile where requirements are discov‑
ered on the fly. This literally means youmay end upwith a fresh new systemwhich functionality wise
either same level (carbon copy) or slightly better (less crappy) than your old legacymonolith. With API
first, your business can start moving quickly without risking delay and quality issues of re‑build.

Separate UI layer from the backend layer

Develop static statelessUIs ‑ native or hybridmobile appsor client‑sidewebUI using frameworks such
asAngular orReact. Before youbuild anybackendAPIs,mockAPI requests& responsesusingSwagger
and provide it as contracts to yourUI team. Treat APImocks as contract and in next phase build actual
APIs. Serve static Stateless web UI from a content delivery network (CDN) in a client browser. As UI
are stateless, data is delivered via the APIs.

Figure 6: Separate UI layer from the backend layer

Convert legacy backend layer into ecosystem of APIs

To build an ecosystem of APIs on top of legacy systems, one must tap into existing system databases
or data sources used by legacy systems. Once you have identified databases, you can either create
instance CRUD APIs using frameworks like Loopback and DreamFactory without or minimal coding,
or roll your own APIs to have more flexibility and control.

Abhishek Tiwari 10.59350/bxfbd-ah658 2016‑10‑08

https://doi.org/10.59350/bxfbd-ah658


Stored Procedure as a Service (SPaaS) 6

Figure 7: Convert legacy backend layer into ecosystem of APIs

Instant CRUD APIs without code

API frameworks such as Loopback and DreamFactory provide a lot of out‑of‑box functionalities apart
from the instance CRUD APIs including but not limited to API authentication, API authorisation, API
security, data caching, API management, etc. As soon as you connect Loopback and DreamFactory
to your database they discover tables and stored procedures and generate instance APIs. This means
your teamwill spend amajority of your time scripting the business anddata logic rather than building
the raw APIs. This approach has been greatly successful for both SQL and NOSQL data sources.

Roll your own APIs

If you decided to roll your own APIs then you have to not only code your CRUD APIs but you also
need to develop authentication, authorization, security features as well as script the business and
data logic. Again you can use FaaS based approach or expose your existing Stored Procedures as a
Service (SPaaS). If you have a substantial investment in stored procedures (8‑12 years) and most of
your business logic is embedded in stored procedures, SPaaS is can deliver your APIs more quickly ‑
as you are not re‑writing your logic but just wiring up existing stored procedures into API services.

Wiring up Stored Procedures into APIs

Abhishek Tiwari 10.59350/bxfbd-ah658 2016‑10‑08

https://doi.org/10.59350/bxfbd-ah658


Stored Procedure as a Service (SPaaS) 7

Wiring up your existing stored procedures into APIs should be quite easy. Here I am going to describe
wiring approach using MSSQL stored procedures, Node and Express, but a similar approach can be
applied to any other database engine, language and framework ‑ Postgres, Python and Flask for that
matter. Anyway, a key aspect of wiring is Tabular Data Stream (TDS) protocol ‑ is an application layer
protocol used to transfer data between a database server and a client. Node provides several imple‑
mentations of TDS protocol for MSSQL ‑ some TDS drivers are only supported on Windows runtime
but others run on cross‑platform including Linux.

Figure 8:Wiring up MSSQL stored procedures into APIs using Node and Express

As you can in above illustration, an HTTP API request /v1/coverage/today/50 hits Expressmid‑
dleware which is running inside Node runtime. At this stage, authentication middleware checks if
JWT token and session are valid, authorization middleware validates data and API access rules, se‑
curitymiddleware filters any security vulnerabilities such SQL or cross‑site injection, and event route
middleware handles the request to route handler. Route handler, extract parameters, take a database
connection from existing connection pool, execute the stored procedures. Stored procedures can be
executed synchronous as well as asynchronous manner ‑ here you can use promises or callback or
streaming. Results from stored procedure execution is passed to SQL2JSON converter and eventually
an HTTP JSON response rendered back to the client.

Continuous delivery for SPaaS

Continuous delivery (CD) is key to the success of any API development program. Continuous delivery
along with continuous integration (CI) enables faster API builds, frequent API testing, and less risky
deployments and releases.

Abhishek Tiwari 10.59350/bxfbd-ah658 2016‑10‑08

https://doi.org/10.59350/bxfbd-ah658


Stored Procedure as a Service (SPaaS) 8

SPaaS API Delivery

API Delivery in SPaaS follows a normal continuous delivery workflow. A developer makes changes
in API code and commits it to a local Git source control repository and push it to a centralised Git
server. This centralisedGit server is hooked into your Jenkins based CDpipeline. A code push triggers
artefact build which is followed by artefact testing, artefact upload and artefact deployment steps in
you CD pipeline. During testing, you can run a variety of tests but as a bareminimum unit, functional,
integration, load tests are advisable.

Figure 9: Continous delivery of APIs in SPaaS

SPaaS SQL Delivery

Continuous delivery of database stored procedures and schema changes in a similar type ofworkflow
as APIs is highly desirable. You should start by adopting a tool such as Redgate or ApexSQL which 1)
connects your database to your source control system, 2) allows you to compare schemas and deploy
differences fast, and 3) integrates with your CI/CD pipeline. Below diagram illustrates a SQL Server
delivery pipeline using Redgate’s SQL Source Control, SQL Compare, and DLM Automation.

Basically, your developer and DBA will make database schema and stored procedure changes using
SQL Server Management Studio with SQL Source Control plugin against the DEV database. Once
changes are committed to local Git and pushed to a centralised Git server, it triggers the build and
test process on Jenkins server which is using Redgate SQL CI plugin along with DLM Automation. Af‑
ter build and test, Jenkins create one or more deployment artefacts (migration scripts) generated by
usingRedgate SQLCompare or SQLSourceControl. Redgate SQLCompare generatesmigration script
by comparingINT or integration database local to build process toUATdatabase. These deployment
scripts are uploaded to an artefact repository and from there applied to UAT and Prod databases.

Abhishek Tiwari 10.59350/bxfbd-ah658 2016‑10‑08

https://doi.org/10.59350/bxfbd-ah658


Stored Procedure as a Service (SPaaS) 9

Figure 10: Continuous delivery of database stored procedures and schema changes

Breakingmonolith backend intomicroservices

We are in 2016, hence irrespective of a new shiny API ecosystemwrapped around your existingmono‑
lithdatabase ‑ storedproceduresare still anti‑pattern. Nowthat youhaveproved thevalueofAPIs, you
must find a way to continue on your journey tomodernise your legacy system. Next step is to convert
existing stored procedures into microservices one at a time while maintaining existing API contracts.
Please note, eachmicroservice must own it’s own data store and provide a good separation between
business logic and data logic. Before you do so, create a strict rule of no new stored procedures. The
role of API gateway is quite critical as we move towards the microservices architecture. Apart from
APImanagement features, API gateway act as a proxywhich hides API implementation details, for the
client API contract is only things that matter.

Abhishek Tiwari 10.59350/bxfbd-ah658 2016‑10‑08

https://doi.org/10.59350/bxfbd-ah658


Stored Procedure as a Service (SPaaS) 10

Figure 11: Breaking monolith database into microservices

Conclusion

In this article, we discussed a fast‑track approach for creating an API ecosystem on top of your legacy
systemswith a large footprint of stored procedures. Developing APIs against these stored procedures
is only suggested as short to mid‑term measure, once API contracts are established replacing stored
procedures with microservices ‑ one at a time is highly recommended.

Abhishek Tiwari 10.59350/bxfbd-ah658 2016‑10‑08

https://doi.org/10.59350/bxfbd-ah658

	Functions as a service (FaaS)
	FaaS Concerns

	Stored Procedures
	Ugly
	Bad
	Good

	Legacy Monolith
	Phased Approach
	Separate UI layer from the backend layer
	Convert legacy backend layer into ecosystem of APIs
	Instant CRUD APIs without code
	Roll your own APIs
	Breaking monolith backend into microservices

	Conclusion

