
The Hidden Cost of Success:
Understanding Non‑Fatal Errors in
Microservices

Abhishek Tiwari
 

 

Citation: A. Tiwari, ”The Hidden Cost of Success: Understanding Non‑Fatal
Errors in Microservices”, Abhishek Tiwari, 2024.
doi:10.59350/m7rzr-57k09

Published on: December 28, 2024

https://orcid.org/0000-0003-2222-2395
https://doi.org/10.59350/m7rzr-57k09


The Hidden Cost of Success: Understanding Non‑Fatal Errors in Microservices 1

A recent study published by researchers from Washington University in St. Louis and Uber Technolo‑
gies reveals a critical but often overlooked pattern in microservices architecture: non‑fatal errors.
While these errors donot cause system failures, they introducenoticeable performanceoverhead that
can impact user experience and operational costs. The study by Lee et al. explores the prevalence of
non‑fatal errors and their impact on the observed latency of top‑level requests.

What is a Non‑Fatal Error?

Ata technical level, inmicroservicesarchitecture, anon‑fatal error representsauniquescenariowhere
internal operations fail without causing the overall client request to fail. For instance, a user request‑
ing a personalised dashboard: even if the call to the personalisation service fails, the system can still
return a default dashboard view to the user. From the user’s perspective, the request succeeds with
an HTTP 200 status code, but internally, the call chain encountered and handled failure gracefully. A
non‑fatal error is a fatal error not propagated back to the client by squashing or handling the error
somewhere in the call chain. It is important to note that a non‑fatal error is an intrinsic property of a
service dependency graph or call chain (see [1]). Despite best efforts, there will always be some per‑
centages of non‑fatal errors, mainly when operating services with transactions per second (TPS) in
millions.

Abhishek Tiwari 10.59350/m7rzr-57k09 2024‑12‑28

https://doi.org/10.59350/m7rzr-57k09


The Hidden Cost of Success: Understanding Non‑Fatal Errors in Microservices 2

C S1

getX

200

S2

getY

200

S3

getZ

404

C S1

getX

404

S2

S4

(a) Non-Fatal Call Chain

(b) Fatal Call Chain

404

getZ

getY

404

Error Propagation

Error Propagation

Figure 1: In a fatal call chain, client or caller (C) receives a 4xx error from Service S2, which Service S1
propagated. With a non‑fatal call chain, although there was a fatal error somewhere deep in the call
chain (in this case at Service S4, which Services S3 then propagated), one of the services (S2) in the
call chain squashed the error, resulting in a 2xx response to the client.

This behaviour underscores a fundamental design principle of microservices: resilience through
graceful failure handling. Services are engineered to handle failures gracefully, often through fallback
mechanisms that enable them to continue functioning even when downstream services encounter
issues. In some instances, services might employ static stability mechanisms such as local cache
to manage the adverse response from their service dependencies. While this approach ensures the
system’s reliability, it can sometimes obscure underlying issues.

At a non‑technical level, the definition of a non‑fatal error varies by organisation. Whatworks for Uber
may not apply to CapitalOne.

Abhishek Tiwari 10.59350/m7rzr-57k09 2024‑12‑28

https://doi.org/10.59350/m7rzr-57k09


The Hidden Cost of Success: Understanding Non‑Fatal Errors in Microservices 3

Prevalence and Distribution

The research by Lee et al. revealed that non‑fatal errors are prevalent in microservices architecture
(see [2]). An analysis of 11 billionRemoteProcedureCalls (RPCs) across 1,900 user‑facing endpoints at
Uber provides insight into how non‑fatal errors affect large‑scale microservices architecture. In their
study, Lee et al. found that while only 0.65% of client requests fail (fatal error), approximately 29.35%
of successful requests contained at least one non‑fatal error in their call chain handled gracefully by
the services.

Their data shows that 84% of endpoints encountered at least one non‑fatal error during the study
period. Someendpoints experiencednon‑fatal errors in over 95%of their requests, suggesting deeply
embedded inefficiencies in certain services.

The Performance Impact

The actual cost of non‑fatal errors becomes apparent when examining their impact on system perfor‑
mance and latency. The study found that requests containing non‑fatal errors require 1.9 timesmore
computational work than their error‑free counterparts. This increased workload translated directly
into increased latency observed by users, with non‑fatal requests averaging 1.8 times higher latency
than error‑free requests.

Figure 2: Latency is higher for requests with non‑fatal errors compared to their error‑free
counterparts. Image credits Lee et al.

Abhishek Tiwari 10.59350/m7rzr-57k09 2024‑12‑28

https://doi.org/10.59350/m7rzr-57k09


The Hidden Cost of Success: Understanding Non‑Fatal Errors in Microservices 4

Non‑fatal errors can cause a higher‑than‑usual increase in tail latency. The study found that the 99th
percentile (P99) latency for requests with non‑fatal errors was 2.9 times higher than for error‑free re‑
quests. This degradation in P99 latency can directly impact user experience, particularly for time‑
sensitive operations.

Understanding Error Patterns

The research identified four primary categories of non‑fatal errors in Uber’s microservices ecosys‑
tem. All 4 of these can be generalised to any microservices ecosystem. Entity Not Found errors
represented 42.46% of non‑fatal errors, typically when services searched for data across distributed
databases with inefficient lookup patterns. Aborted Operationsmade up 23.18% of errors, often re‑
lated to concurrency issues and failed transactions. Failed Preconditions contributed 16.47%, usu‑
ally causedbymismatched state assumptions or validations between services. ResourceExhaustion
accounted for 16.29%, resulting from capacity limits and resource management issues.

Error propagation

The study suggests that non‑fatal error propagation through microservices architecture follows a dif‑
ferent pattern than fatal errors. Compared to fatal errors, non‑fatal errors typically originate deeper
in the RPC call chain. They had relatively short propagation paths, with over 80% contained within
three or fewer levels of propagation.

Abhishek Tiwari 10.59350/m7rzr-57k09 2024‑12‑28

https://doi.org/10.59350/m7rzr-57k09


The Hidden Cost of Success: Understanding Non‑Fatal Errors in Microservices 5

Figure 3: Propagation length of errors is defined as the difference between the depth of the RPC
where the error originates and the depth of the caller RPC that squashes the said error. Image credits
Lee et al.

Moreover, API error handling demonstrated a notable bimodal distribution: approximately 29% of
APIs consistently stopped error propagation, while 63% always propagated errors. This suggests that
most services implemented error‑handling strategies, though they were not consistent.

Testing is hard

The prevalence of non‑fatal errors reveals a key challenge in testing microservice architectures. In a
microservices architecturewith 6,000 services like Uber’s, the number of possible call paths and error
scenarios can growexponentially. The complexity becomes evident if one considers howeach service
might call multiple downstream services, with each having different response patterns ranging from
success to various errors. This complexity is further amplified by varying error‑handling behaviours
between services. As noted above, some opted to propagate errors while others handled them lo‑
cally.

The challenge grows further with asynchronous call paths, the use of feature flags, and the constant
evolution of services through different versions and deployments, each creating new permutations

Abhishek Tiwari 10.59350/m7rzr-57k09 2024‑12‑28

https://doi.org/10.59350/m7rzr-57k09


The Hidden Cost of Success: Understanding Non‑Fatal Errors in Microservices 6

andcombinationsof possible call paths. Traditional end‑to‑end testing cannot cover all possible error
scenarios for all possible call paths. Service dependenciesmake it difficult to reproduce specific error
conditions, while timing‑related issues oftenmanifest only under actual production load.

This inherent complexity means that many non‑fatal error scenarios are often discovered only in pro‑
duction, highlighting the need for robust monitoring and observability solutions. Organisations, par‑
ticularly those with large‑scale microservices ecosystems, should invest in production error analysis
tools and develop consistent error‑handling patterns. The focus should shift from attempting to test
every possible call path to building services that can handle unexpected errors gracefully while main‑
taining visibility in these failures.

Identifying Non‑Fatal Errors

The study discussed several methods to identify services and endpoints experiencing non‑fatal er‑
rors.

Distributed Tracing Analysis

Distributed tracing frameworks such as Jaeger and OpenTelemetry can be used to track requests as
they traverse through the microservices call graph. The study analysed distributed traces generated
by Jaeger ‑ Uber’s distributed tracing framework ‑ to find RPC errors that did not cause top‑level fail‑
ures but increased latency. Findings highlighted the following indicators as proxies for non‑fatal er‑
rors:

• Endpoints where successful requests have higher latency than average
• Errors in deeper service call chain that do not propagate to the top
• Services showing high rates of fallback behaviours for data lookup

Critical Path Analysis

Analysing the critical path of requests helps to identify where non‑fatal errors contribute most to la‑
tency in the call chain. The research found that not all errors impact latency equally ‑ those on the
critical path have themost significant effect. About 50%of errors occur off the critical path and, there‑
fore, haveminimal impact on latency. Distributed tracing is a prerequisite for the critical path analysis
of microservices architecture.

Abhishek Tiwari 10.59350/m7rzr-57k09 2024‑12‑28

https://doi.org/10.59350/m7rzr-57k09


The Hidden Cost of Success: Understanding Non‑Fatal Errors in Microservices 7

Tail Latency Examination

The study suggests that endpoints showing noteworthy differences between median and tail (P99)
latency indicate hidden non‑fatal errors. The case of Uber requests with non‑fatal errors showed 2.9x
higher P99 latency compared to error‑free requests, making tail latency analysis a valuable indicator
of problematic endpoints.

These approaches, combined, provide a comprehensive way to identify endpoints with non‑fatal er‑
rors.

Potential Optimisations

The study demonstrates that many non‑fatal errors originate from suboptimal design patterns rather
than unavoidable system conditions. By systematically addressing these patterns, organisations can
improve performance and resource utilisation in their microservices architecture.

Eliminating Fallback Data Lookups

When a service encounters an “entity not found” error, it often triggers redundant or fallback lookups
across multiple data stores. For example, in the user profile service described in the paper, when
fetching user information, the system would check multiple regional databases sequentially (Ameri‑
cas, Europe, Asia‑Pacific) even when user location data was available. By using available context to
target the correct database directly, the service reduced latency by 30%.

Teams should examine error patterns to understand where similar redundant lookups occur and im‑
plement more intelligent routing strategies.

Removing Obsolete Feature Flags

The study reported several instanceswhere Uber services continued to invoke deprecated features or
usedobsolete feature flags. For instance, theapp‑launchendpointwas still attempting to connect toa
decommissioned pool‑provider service, causing predictable failures that added unnecessary latency.
Regular audits of dependencies and feature flags help surface and remove these defunct invocations,
which consistently result in non‑fatal errors.

Guidelines for Error Handling and Retry

To ensure consistent error handling across all services, organisations can define internal strategies
for handling and propagating microservices errors. Teams should also document guidance on when

Abhishek Tiwari 10.59350/m7rzr-57k09 2024‑12‑28

https://doi.org/10.59350/m7rzr-57k09


The Hidden Cost of Success: Understanding Non‑Fatal Errors in Microservices 8

a service can contain errors locally versus propagating them to upstream services or initiating the
client.

Many services repeatedly attempt the same failed operation within a single request flow. The paper
describes how the get‑stores‑viewendpoint repeatedly called get‑user despite previous failures in the
same request chain. Implementing request‑scoped error caching can ensure that once an operation
fails, subsequent attempts within the same request can quickly return the previously cached error
response rather than executing the whole operation again.

Finally, should retrying in request flow be completely discouraged to avoid cascading impact? Un‑
controlled retries can cause retry storms in a large‑scale microservices architecture. Approaches like
exponential backoff, retry budgets, and circuit breakers can be explored tomitigate retry‑related con‑
cerns.

Optimising Parallel Execution

The study found cases where Uber services made parallel calls to multiple backends when the data
couldhaveonly existed inone location. For example, the fetchInfoAPI simultaneously queriedmobile
and web data stores even though data would only be present in one store.

While parallel execution can improve performance in some cases, it can also lead to unnecessary er‑
rors and resource consumption. Teams shouldmake informed decisions about parallel vs. sequential
execution not just based on performance considerations but also on factoring data locality and busi‑
ness requirements.

Reverse Context Propagation

Reverse Context Propagation involves passing error context andmetadata back through the response
chain, helping upstream services make more intelligent decisions about retries, error handling and
propagation. Technically, one can use existing distributed tracing infrastructure to ensure all services
in a call chain are aware of any fatal error and subsequent squashing or graceful handling of the error
to make intelligent decisions.

Latency‑Reduction Estimator

The study also introduces a new technique, the Latency‑Reduction Estimator, to help predict latency
improvements if non‑fatal errors are eliminated. This method can analyse distributed traces to iden‑
tify services and endpoints where non‑fatal errors impact latency. The estimator can forecast perfor‑

Abhishek Tiwari 10.59350/m7rzr-57k09 2024‑12‑28

https://doi.org/10.59350/m7rzr-57k09


The Hidden Cost of Success: Understanding Non‑Fatal Errors in Microservices 9

mance gains by comparing traces with and without non‑fatal errors, helping teams prioritise fixing
non‑fatal errors.

Business Definition

While non‑fatal errors in contexts like ride‑sharingor streaming servicesmight translate intounaccept‑
able or poor user experience, these errors in highly regulated industries like banking, healthcare, or
insurance can have serious compliance and legal implications. For example, a KYC (Know Your Cus‑
tomer) verification step that falls back to a previous verification due to a non‑fatal error could violate
compliance requirements. A non‑fatal error retrieving patient history that returns partial data could
cause incomplete medical assessments. These examples highlight why error handling and monitor‑
ing in regulated industries must go beyond simple success/failure or system metrics. Organisations
must carefully evaluate which errors can be treated as “non‑fatal” and the actual cost of non‑fatal
errors and ensure their error handling and propagation strategies align with their regulatory obliga‑
tion.

Conclusion

While non‑fatal errors do not cause system failures, their influence on performance and user expe‑
rience can not be ignored. Addressing non‑fatal errors becomes critical to delivering a better user
experience as the depth of the microservices call graph increases. Organisations with large‑scale mi‑
croservices ecosystems should consider implementingmethods to identify and fix non‑fatal errors.

Lastly, more research is required to understand the side‑effects of non‑fatal errors beyond perfor‑
mance, including overall debuggability and impact on an organisation’s compliance posture.

References

[1] A. Tiwari, “UnveilingGraphStructures inMicroservices: ServiceDependencyGraph, CallGraph,
and Causal Graph,” 2024, Abhishek Tiwari. doi: 10.59350/hkjz0‑7fb09.

[2] I.‑T. A. Lee, Z. Zhang, A. Parwal, and M. Chabbi, “The Tale of Errors in Microservices,” 2024, As‑
sociation for Computing Machinery. doi: 10.1145/3700436.

Abhishek Tiwari 10.59350/m7rzr-57k09 2024‑12‑28

https://doi.org/10.59350/hkjz0-7fb09
https://doi.org/10.1145/3700436
https://doi.org/10.59350/m7rzr-57k09

	What is a Non-Fatal Error?
	Prevalence and Distribution
	The Performance Impact
	Understanding Error Patterns
	Error propagation
	Testing is hard
	Identifying Non-Fatal Errors
	Distributed Tracing Analysis
	Critical Path Analysis
	Tail Latency Examination

	Potential Optimisations
	Eliminating Fallback Data Lookups
	Removing Obsolete Feature Flags
	Guidelines for Error Handling and Retry
	Optimising Parallel Execution
	Reverse Context Propagation
	Latency-Reduction Estimator

	Business Definition
	Conclusion
	References

