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The rise of service‑oriented architecture (SOA) andmicroservices architecture has led to amajor shift
in software development, enabling the creation of complex, distributed systems composed of inde‑
pendent, loosely coupled services. These architectures offer numerous benefits, including scalabil‑
ity, flexibility, and resilience. However, the distributed nature of these systems introduces new chal‑
lenges related to understanding, managing, and analysing their behaviour. Graph‑based modelling
has emerged as a powerful technique for addressing these challenges. Graphs provide a natural and
intuitiveway to represent the relationships betweendifferent components of anSOAormicroservices
system, allowing developers and operators to gain insights into the system’s structure, dependencies,
behaviour, and performance.

This article examines three graphmodels: service dependency graphs, call graphs, and causal graphs.
For each graph type, the article provides a detailed exploration of its mathematical foundations and
use cases applications.

Graphs and Adjacency Metrics

Graphs are fundamental mathematical structures used to model relationships and interactions in
various systems, including social networks, communication systems, and biological interactions. A
graph provides a flexible and intuitive framework to represent entities (nodes) and their relationships
(edges), enabling efficient analysis of both structural and functional properties.

Graph Basics

A graph 𝐺 is formally defined as:

𝐺 = (𝑉 , 𝐸),

Where,

• 𝑉 : A set of vertices (or nodes) representing entities.
• 𝐸: A set of edges, where each edge 𝑒 ∈ 𝐸 is a pair (𝑢, 𝑣) with 𝑢, 𝑣 ∈ 𝑉 . An edge represents a
relationship or interaction between the vertices 𝑢 and 𝑣.

Graphs can be classified based on their structure and properties:

1. Directed Graphs (𝐺 = (𝑉 , 𝐸)): Edges have a direction, meaning (𝑢, 𝑣) ≠ (𝑣, 𝑢). Directed
graphs are suitable for modeling asymmetric relationships, such as service dependencies or
communication flows.
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2. Undirected Graphs: Edges are bidirectional, where (𝑢, 𝑣) = (𝑣, 𝑢). These are used for symmet‑
ric relationships, like mutual friendships.

3. WeightedGraphs: Eachedge (𝑢, 𝑣)hasanassociatedweight𝑤(𝑢, 𝑣), representing thestrength,
cost, or frequency of the relationship.

Adjacency Matrix

Theadjacencymatrix is amathematical representationof a graph, providinga compactway toencode
the relationships between nodes. For a graph𝐺 = (𝑉 , 𝐸)with 𝑛 nodes, the adjacencymatrix𝐴 is an
𝑛 × 𝑛 matrix defined as:

𝐴[𝑖][𝑗] =
⎧{{
⎨{{⎩

1 if there is an edge from node 𝑖 to node 𝑗,

0 otherwise.

For weighted graphs, the adjacency matrix is generalized to include weights:

𝐴[𝑖][𝑗] =
⎧{{
⎨{{⎩

𝑤(𝑖, 𝑗) if there is an edge from node 𝑖 to node 𝑗,

0 otherwise.

Forexample: Consider thedirectedgraph𝐺with𝑉 = {𝐴, 𝐵, 𝐶}and𝐸 = {(𝐴, 𝐵), (𝐵, 𝐶), (𝐴, 𝐶)}:

𝐴 =

⎡
⎢⎢⎢⎢⎢
⎣

0 1 1

0 0 1

0 0 0

⎤
⎥⎥⎥⎥⎥
⎦

• 𝐴[1][2] = 1: Indicates an edge from 𝐴 to 𝐵.
• 𝐴[2][3] = 1: Indicates an edge from 𝐵 to 𝐶.

The adjacencymatrix is a foundational tool in graph theory, offering a structuredway to represent and
analyze the relationships in a graph. Its compact representation and mathematical properties make
it an indispensable instrument for studying graph‑basedmodels for SOA.
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Service Dependency Graphs

Dependency graphs serve as a visual representation of the intricate web of interdependencies be‑
tween services within an SOA or microservices architecture. These graphs, often referred to as ser‑
vice dependency graphs, are directed graphs inwhich nodes symbolise services ormicroservices, and
edges represent dependencies between them, typically in the form of service invocations.

Definition of Service Dependency Graph

An Service Dependency Graph (SDG) is a directed graph 𝐺 = (𝑉 , 𝐸),

Where,

• 𝑉 : The set of vertices, where each vertex 𝑣𝑖 ∈ 𝑉 represents a service.
• 𝐸: The set of directed edges, where each edge (𝑣𝑖, 𝑣𝑗) ∈ 𝐸 indicates that service 𝑣𝑖 depends on
service 𝑣𝑗.

For example: A directed edge (𝑆1, 𝑆2) signifies that Service 𝑆1 requires Service 𝑆2 to perform its
operations. Following illustrated different archetypes in a service dependency graph.
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Figure 1: Service Dependency Graph and example archetypes. For a sequential archetype, Service
S1 depends on Service S2 to perform its operation. Likewise Service S2 depends on Service S3 and
S4 to perform its job hence S1 has a transitive dependency on S3 and S4. Similar service
dependencies can be seen in fan‑out and fan‑in archetypes.

Adjacency Matrix

An example of adjacency matrix 𝐴 for the SDG with services 𝑆1, 𝑆2, 𝑆3, 𝑆4 in sequential pattern can
be defined as:
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𝐴 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∅ 1 ∅ ∅

∅ ∅ 1 ∅

∅ ∅ ∅ 1

∅ ∅ ∅ ∅

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Explanation:

• Row 𝑖 and column 𝑗 correspond to services 𝑆𝑖 and 𝑆𝑗, respectively.
• 𝐴[𝑖][𝑗] represents dependency between 𝑆𝑖 and 𝑆𝑗.
• ∅ indicates no dependency exist between the corresponding services.

Use Cases & Applications

SDGsoffer a rangeof applications in various stagesof the softwaredevelopment lifecycle, including:

Visualisationof ServiceDependencies SDGsprovide a clear and intuitiveway to visualise the com‑
plex relationships between services in a system. This visualisation aids in understanding the overall
system architecture, identifying critical services, and pinpointing potential bottlenecks.

SystemComplexity Analysis By analysing the structure of an SDG, developers can assess the com‑
plexity of the system, identify areas of high coupling, and evaluate the impact of changes on different
services. Metrics such as node degree, graphdiameter, and clustering coefficient can be used to quan‑
tify system complexity and guide design decisions.

Microservice Testing SDGs play a crucial role in testing microservice systems by enabling devel‑
opers to identify the dependencies of a particular service under test and design comprehensive test
cases that cover all potential interaction scenarios (see [1]). Tools can automatically generate and
execute tests based on the SDG, improving test coverage and efficiency.

Monolithic Application Decomposition During the process of migrating a monolithic application
to a microservice architecture, SDGs assist in identifying logical boundaries and dependencies be‑
tween different components, facilitating the decomposition into smaller, independent services. This
decomposition process can be automated using clustering algorithms and graph partitioning tech‑
niques applied to the SDG.
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Design Error and Anti‑pattern Identification SDGs can be used to detect design flaws and anti‑
patterns, such as cyclic dependencies, long chains of dependencies, and hub‑and‑spoke structures,
that can negatively impact systemmaintainability, scalability, and resilience. Tools can automatically
analyse SDGs and flag potential issues, providing developers with valuable insights for improving the
system design.

Attackmodelling and response strategies SDGs are used in attackmodelling and analysis to visu‑
alise and quantify the impact of attacks, and to inform response strategies. They capture functional
dependencies, showing how the availability, confidentiality, and integrity of one service can impact
others. SDGs are often combined with attack graphs (AGs) to provide a more comprehensive view of
the attack landscape. AGsmodel the steps an attacker might take to exploit vulnerabilities and reach
a specific goal, while SDGs capture the service dependencies that can be leveraged for attack propa‑
gation. Combining these two graphs allows for a more accurate assessment of the attack impact and
informs the selection of appropriate responses

Service Call Graphs

A service call graph (SCG) or call graph is extension of service dependency graph where edges are la‑
belled with specific operation or endpoint name. Call graphs capture the dynamic flow of execution
withinamicroservices systembymeticulously tracing thesequenceof service invocations. SCGcovers
all possible invocation or call paths in a given microservices topology. SCG is often used as permis‑
sion graph. Call graphs provide a valuable runtime perspective of the system’s behaviour, enabling
developers and operators to understand how services interact during actual execution.

Definition of Call Graphs

A Call Graph is a directed, labeled, and possibly weighted graph 𝐺 = (𝑉 , 𝐸, 𝐿).

Where,

• 𝑉 : The set of vertices, each representing a service or service instance.
• 𝐸 ⊆ 𝑉 × 𝑉 : The set of directed edges, where an edge (𝑢, 𝑣) indicates that service 𝑢 makes a
call to service 𝑣.

• 𝐿: A labeling function 𝐿 ∶ 𝐸 → Σ, where Σ is the set of endpoint names or operations. For
example, 𝐿((𝑢, 𝑣)) = operation specifies the name of the operation invoked by 𝑢 on 𝑣.

• Weights (optional): A weight 𝑤(𝑢, 𝑣) can be associated with each edge to represent runtime
metrics such as latency, throughput, or call frequency.
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Adjacency Matrix

For a Call Graph 𝐺 = (𝑉 , 𝐸, 𝐿), the adjacency matrix 𝐴 is a matrix of dimensions |𝑉 | × |𝑉 |, where
each entry 𝐴[𝑖][𝑗] contains a set of labels or metrics associated with the call from node 𝑖 to node 𝑗.

𝐴[𝑖][𝑗] =
⎧{{
⎨{{⎩

{𝑙1, 𝑙2, … , 𝑙𝑘} if there are operations {𝑙1, 𝑙2, … , 𝑙𝑘} invoked from node 𝑖 to node 𝑗,

∅ if no call exists from node 𝑖 to node 𝑗.

For instance:

• 𝐴[𝑖][𝑗] = {GET /users,POST /orders} indicates that service 𝑖 makes two calls to service 𝑗 using
these operations.

• 𝐴[𝑖][𝑗] = ∅ means there are no calls from 𝑖 to 𝑗.

Example: The adjacency matrix 𝐴 for the SCG with services 𝑆1, 𝑆2, 𝑆3, 𝑆4 is defined as:

𝐴 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∅ {putX, getX, deleteX} ∅ ∅

∅ ∅ {putY, getY, deleteY} ∅

∅ ∅ ∅ {putZ, getZ, deleteZ}

∅ ∅ ∅ ∅

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Explanation:

• Row 𝑖 and column 𝑗 correspond to services 𝑆𝑖 and 𝑆𝑗, respectively.
• 𝐴[𝑖][𝑗] represents the set of operations that 𝑆𝑖 invokes on 𝑆𝑗.
• ∅ indicates no direct calls exist between the corresponding services.

Service‑to‑Service Mappings:

1. 𝑆1 → 𝑆2: {putX, getX, deleteX}
2. 𝑆2 → 𝑆3: {putY, getY, deleteY}
3. 𝑆3 → 𝑆4: {putZ, getZ, deleteZ}
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Figure 2: Service Call Graph

Weighted Adjacency Matrix

If the SCG includes runtime metrics, the adjacency matrix can store weighted values for each opera‑
tion. The matrix 𝑊 is defined as:

𝑊[𝑖][𝑗](𝑙) = metric(𝑖, 𝑗, 𝑙),

Where 𝑙 is a specific label (operation or endpoint), and metric(𝑖, 𝑗, 𝑙) represents the runtime value
associated with the call 𝑙 from 𝑖 to 𝑗.

In addition metric(𝑖, 𝑗, 𝑙) could be:

• Call frequency: metric(𝑖, 𝑗, 𝑙) = Number of calls per unit time,
• Latency: metric(𝑖, 𝑗, 𝑙) = Average time taken for the call,
• Error rate: metric(𝑖, 𝑗, 𝑙) = Percentage of failed calls.

For example: A weighted adjacency matrix SCG with latency (in ms) of calls,
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𝐴 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∅ {(putX,30), (getX, 10), (deleteX, 30)} ∅ ∅

∅ ∅ {(putY, 15), (getY, 10), (deleteY, 30)} ∅

∅ ∅ ∅ {(putZ, 35), (getZ, 15), (deleteZ, 35)}

∅ ∅ ∅ ∅

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Service invocation chain

A service call chain (SCC) or service invocation chain (SIC) indicates a sequence of service invocations
between multiple microservices to fulfil a request or complete an operation. Invocations can be syn‑
chronous (blocking) or asynchronous (non‑blocking), depending on the system design and require‑
ments. For a given call graph 𝐺 = (𝑉 , 𝐸, 𝐿), there may exist multiple call chains between a source
node and a destination node. These chains represent alternate paths through the graph. In addition
call chains may vary depending on runtime conditions, such as failovers, or feature toggles.

A SCC is a sequence 𝑃 = [(𝑣1, 𝑙1), (𝑣2, 𝑙2), … , (𝑣𝑘, 𝑙𝑘)] such that:

(𝑣𝑖, 𝑣𝑖+1) ∈ 𝐸 and 𝐿(𝑣𝑖, 𝑣𝑖+1) = 𝑙𝑖 ∀𝑖 ∈ {1, 2, … , 𝑘 − 1}.

Depth or length of call chain is described by 𝑘 or number of elements in sequence.

A service call chain𝑃 can be constructed by traversing the adjacencymatrix𝐴, ensuring that both the
vertices 𝑣𝑖 and the labels 𝑙𝑖 meet the specified criteria.

As illustrated below, three call chains in a topology of 4 services. One of the call from 𝑆1 to 𝑆4 could
be represented by P:

𝑃 = [(𝑆1, putX), (𝑆2, putY), (𝑆3, putZ)].
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Service
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getX
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putY
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Service call chain-2
Service call chain-3

Figure 3: Service Call Chain. 3 call chains in a topology of 4 services.

Error and latency If an error occurs in one of the service calls in the chain, it can propagate back up
the chain and affect the overall request processing.

Similarly, latency of a call chain is defined as the total time required to traverse the chain. This is
calculated as the sum of the latencies of each invocation in the chain.

Latency(𝑃 ) =
𝑘−1
∑
𝑖=1

Latency(𝑣𝑖, 𝑙𝑖).

Consider the following Service Call Chain:

𝑃 = [(𝑆1, putX), (𝑆2, putY), (𝑆3, putZ)],

with the following latencies:

• Latency(𝑆1, putX) = 30ms
• Latency(𝑆2, putY) = 15ms
• Latency(𝑆3, putZ) = 35ms

The total latency of the chain 𝑃 is:

Latency(𝑃 ) = 30 + 15 + 35 = 80ms.
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Use Cases & Applications

Call graphs facilitate a variety of applications in understanding and managing microservice sys‑
tems:

Understanding Runtime Behaviour Call graphs offer a visual representation of the execution flow
within a microservice system, allowing developers and operators to understand the sequence of ser‑
vice interactions during runtime. This understanding is crucial for debugging and troubleshooting
issues, especially in distributed systems where the flow of execution can be complex and difficult to
follow.

Performance Profiling and Bottleneck Analysis By analysing call graphs, developers can identify
performance bottlenecks by pinpointing services that experience high invocation frequencies or long
execution times. This information is crucial for optimizing resource allocation and improving theover‑
all system performance (see [2]).

Debugging and Troubleshooting Distributed Systems In distributed systems, tracing the flow of
execution across multiple services can be challenging. Call graphs help developers to visualise the
interactions between services, pinpoint the origin of errors, and identify the root cause of failures.

Designing caching strategy formicroservices Call graphs are important to design and implement
the caching strategy for microservices in particular for providing automatic and coherent caching for
microservices call graphs (see [3]).

Causal Graphs

Causal graphs aim to capture the cause‑and‑effect relationships between different metrics or events
in a microservice system. These graphs are used to understand the root causes of performance is‑
sues, failures, and other anomalies in complex distributed systems. In a causal graph, nodes repre‑
sent metrics or events, while directed edges denote causal relationships. An edge from node A to
node B indicates that A causes B. The acyclic nature of the graph ensures that there are no circular
dependencies.

Definition of Causal Graphs

Let 𝐺(𝑉 , 𝐸) be the causal graph where:
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1. Nodes (𝑉 ) represent metrics from all services. For 𝑛 services (𝑆1, 𝑆2, … , 𝑆𝑛), the nodes are:

𝑉 = {𝑊𝑆1, 𝑈𝑐,𝑆1, 𝑈𝑚,𝑆1, 𝐿𝑆1, 𝐸𝑆1, … , 𝑊𝑆𝑛, 𝑈𝑐,𝑆𝑛, 𝑈𝑚,𝑆𝑛, 𝐿𝑆𝑛, 𝐸𝑆𝑛}

𝑊𝑆𝑖, 𝑈𝑐,𝑆𝑖, 𝑈𝑚,𝑆𝑖, 𝐿𝑆𝑖, 𝐸𝑆𝑖 are metrics described in following section.

2. Edges (𝐸) represent causal relationships among metrics. There can be two types of edges in
causal graphs,

• Intra‑service edges: Represent causal relationships amongmetrics within a single service (e.g.,
𝑊𝑆1 → 𝑈𝑐,𝑆1).

• Inter‑service edges: Represent causal relationships between metrics of different services (e.g.,
𝐿𝑆2 → 𝐿𝑆1).

U mU c

E

W

L

U mU c

E

W

L

U mU c

E

W

L

S1 S2 S3

E   - Errors

Service

Service dependency

Causal dependency

Metric

L   - Latency

U c   - CPU Utilisation

U m   - Memory Utilisation

W   - Workload

Figure 4: Causal graph of 3 services S1, S2, and S3 using goldenmetrics workload, CPU utilisation,
memory utilisation, latency and errors.

Golden Signals

In microservices systems, the following key metrics (golden signals) are typically used for building
causal graphs (see [4] and [5]),

1. Workload (𝑊 ): Represents the incoming requests or load on the system.
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2. CPU Utilization (𝑈𝑐): Percentage of CPU resources utilized by the service.
3. Memory Utilization (𝑈𝑚): Percentage of memory resources consumed.
4. Latency (𝐿): The time taken to process a request.
5. Errors (𝐸): The rate of failed requests.

Example causal dependency between abovemetrics,

1. 𝑊 → 𝑈𝑐: Increased workload directly increases CPU utilization.
2. 𝑊 → 𝑈𝑚: Higher workload can lead to higher memory consumption.
3. 𝑈𝑐 → 𝐿: High CPU utilization can cause increased latency.
4. 𝑈𝑚 → 𝐿: High memory utilization might also contribute to latency.
5. 𝐿 → 𝐸: Increased latency can lead to higher error rates.

Use Cases & Applications

Causal graphs provide valuable insights into the behaviour ofmicroservice systems, enabling a range
of applications:

Root Cause Analysis Causal graphs are particularly valuable for root cause analysis of failures and
performance issues in microservice systems. By tracing the causal relationships between different
metrics and events, operators can identify the underlying factors contributing to an observed prob‑
lem.

Performance Diagnosis and Optimization Causal graphs aid in identifying performance bottle‑
necks by highlightingmetrics and events that have a significant impact on system performance. This
information can be used to optimise resource allocation, fine‑tune system configurations, and imple‑
ment performance improvement measures.

Anomaly Detection and Alerting Causal graphs can be used to develop anomaly detection sys‑
tems that can identify unusual patterns of behaviour and alert operators to potential issues before
they impact users. By monitoring the causal relationships between metrics, the system can detect
deviations from normal behaviour and trigger alerts.

Construction of Graphs

Construction of these graphs is amulti‑step process that leverages runtime data, system architecture,
and dependency tracking methods to accurately model the relationships among microservices in a
system.
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Static Analysis

Static analysis involves analysing software artefacts before deployment, typically by inspecting
source code, configuration files, and documentation. Static analysis tools can identify service
endpoints, dependencies between microservices based on direct calls, and data entity sharing. For
instance, by parsing source code, one can determine which services make HTTP requests to other
services and visualise these interactions as graph.

Static analysis has the advantage of being performed early in the development lifecycle, potentially
identifying issues before deployment. It also provides a complete view of all possible execution
paths;

However, static analysis can be limited by:

• Language dependency: Static analysis tools are often language‑specific, making it challeng‑
ing to analyse polyglot microservice systems. There are ongoing attempts to create Universal
Language‑Agnostic AST (LAAST) which may eventually overcome this gap.

• Difficulty in handling dynamic behaviour: Static analysis cannot fully capture dynamic aspects
like load balancing or service discovery, which can affect runtime dependencies.

• Overhead: Performing comprehensive static analysis on large codebases can be computation‑
ally expensive and time‑consuming.

Dynamic Analysis

Dynamic analysis relies on gathering information from a running system, typically through monitor‑
ing tools that collect telemetry data such as logs, traces, and metrics. This data can reveal the ac‑
tual interactions between microservices in a production environment. By analysing runtime traces,
one can determine the sequence of service calls, identify service dependencies, and quantify their
frequency. Dynamic analysis can also capture asynchronous communication patterns like publish‑
subscribe, which static analysis might miss.

Dynamic analysis offers several benefits:

• Language agnosticism: As it relies on runtime behaviour, dynamic analysis is generally inde‑
pendent of programming languages.

• Realistic viewof the system: Dynamic analysis provides insights into the actual interactions and
dependencies in a live system, considering factors like load balancing.

While dynamic analysis provides a runtime perspective, it is limited by:

• Incomplete coverage: The accuracy of dynamic analysis depends on the test coverage or user
interactions that trigger the service calls (see [6]).
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• Potential performance impact: Instrumentingmicroservices to collect telemetry data can intro‑
duce performance overhead.

Hybrid Approaches

Hybrid approaches combine the strengths of both static and dynamic analysis. They can utilise static
analysis to identify potential dependencies and then use dynamic analysis to confirm or refine those
dependencies based on actual runtime behaviour. This can result in amore comprehensive and accu‑
rate SDG that reflects the complexities of a microservices system. Hybrid approaches can also lever‑
age dynamic analysis to uncover aspects like service popularity and usage patterns, which can be
overlaid onto the statically derived graphs.

Advanced Graph‑based Techniques

Whenmicroservice architectures are modelled as graphs, various graph‑based techniques can be ap‑
plied to analyse and understand their structure and behaviour. Here are some techniques:

Path

A path in a graph is a sequence of nodes connected by edges. In a microservice architecture, paths
represent the flowof requests between services. By analysing paths, you canunderstand thedifferent
ways requests are processed and identify potential performance issues.

• Critical Path: Identifies the longest path of dependencies, representing the maximum latency
that could occur due to cascading interactions (see [7]).

• Shortest Path: Represents theminimal number of intermediate services required for communi‑
cation between two services.

• Longest Path: Maximum number of intermediate services for communication between two ser‑
vices of a given call graph.

Centrality

Centralitymeasures identify themost important nodes in a graph. Different centralitymeasures focus
on different aspects of importance. For example, degree centrality measures the number of connec‑
tions a node has, while betweenness centrality measures how often a node lies on the shortest path
between other nodes. Applying centralitymeasures to amicroservices graph can help identify critical
services that require special attention in terms of monitoring andmaintenance.
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Community Detection

This technique identifies clusters of densely connected nodes within a graph. Applying community
detection to amicroservice graph can help identify groups of services that perform related functions,
which can be useful for decomposing the system into smaller, more manageable units.

Graph Similarity

This technique compares the structure and attributes of two graphs to determine their similarity.
Graph similarity can be used for tasks like anomaly detection by comparing the current state of the
system to a library of known anomalous patterns.

Graph Kernels

These are functions that measure the similarity between two graphs, often by comparing their sub‑
structures. Graph kernels can be used for tasks like classification or regression, for example, predict‑
ing the performance of a microservice system based on its graph structure.

Multimodal Graph Analysis

Multimodal Graph Analysis focuses on combining different graph types, such as dependency graphs,
causal graphs, and call graphs, to create a more holistic and comprehensive view of the system’s be‑
haviour. By integratingmultiple perspectives, developers and operators can gain deeper insights into
system dynamics, dependencies, performance bottlenecks, and security vulnerabilities.

Graph Neural Networks (GNNs)

GNNs, a powerful class of machine learning models designed to operate on graph‑structured data,
are being increasingly applied to analyse and learn complex patterns and relationships fromSOA and
microservices graphs. GNNs can be used for tasks like anomaly detection, root cause analysis, perfor‑
mance prediction, and security vulnerability assessment.

Dynamic Graph Analysis

Microservice systems are inherently dynamic, with services being scaled up or down, updated, and
redeployed frequently. Dynamic graph analysis aims to develop techniques for analysing and visu‑
alising the evolution of graphs over time, enabling developers and operators to understand how the

Abhishek Tiwari 10.59350/hkjz0-7fb09 2024‑12‑21

https://doi.org/10.59350/hkjz0-7fb09


Unveiling Graph Structures in Microservices: Service Dependency Graph, Call Graph, and Causal Graph 17

system’s structure and behaviour change in response to various events. They can be also used to
identify the “diamond” patterns.

Conclusion

Graph‑based modelling is a powerful tool for navigating the complexities of SOA and microservices
architecture. By understanding these graph‑based models, software architects and engineers can
effectively address the complexities of modern software architectures, leading to improved system
design, development, and operation.
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